Title: My job today is to convince/remind you:
1TITLE
2My job today is to convince/remind you
That there is likely to be physics Beyond the
Standard Model
That this physics is important, and the search
for it deserves our full attention
That the Large Hadron Collider is likely to be
the best place to do this work over the next 10
to15 years
That I have a valuable role to play in the
process of discovering the truth
3Large Hadron Collider and ATLAS in 1 minute
4Simple experimental aim
Collide protons and see what happens.
5Large Hadron Collider (LHC)
6Collider (LHC) nearing completion in CERN, Geneva
7ATLAS Experiment to look at the collisions
MORE ON THIS LATER
8Note about the brief
- Talk about
- Your vision for your future research programme
at Cambridge - In context of the LHC we have
- predictable items
- Make the detector work
- Commissioning understand MET resolution, jet
energy scale, alignment - unpredictable items
- What new physics may nature hold?
- What will we see of it?
- How will we measure it?
MANYUNKNOWNS
ADAPTABILITY IS THE KEY
9Physics Case
- Why Physics beyond the Standard Model?
10The Standard Model not the final story
- Higgs not yet found
- Top-quark charge undetermined!
- Quark masses poorly measured
- Fine-tuning / hierarchy problem (technical)
Why are particles light? - Does not explain Dark Matter
- No gauge coupling unification
- Why three generations?
None of these criticisms need necessarily be
cause for alarm
But new Physics, e.g. Supersymmetry, can help.
11Possibilities for new physics
- Supersymmetry?
- Minimal
- Non-minimal
- R-parity violating or conserving
- Gauge mediated
- Gravity mediated
- Extra Dimensional Models
- Large (particles trapped on brane)
- Universal (particles everywhere)
- With/without small black holes
- Littlest Higgs ?
- .
12(No Transcript)
13Theres a strange guarantee
- Something new will be found at the LHC
- If the Higgs Boson exists
- It will be found!
- If the Higgs Boson doesnt exist
- Cross-section for W-boson scattering will be
observed to deviate from Standard Model
- Strategic gamble
- Anticipate large
- Look for everything
- Do not concentrate on Higgs
14What I Contribute
Ana
15High Energy Physics forthe 21st Century
- Step one into the unknown
Christopher Lester
16Standard Model Bad
Standard Model Good
- Higgs not yet found
- Quark mixing not over-constrained yet
- Quark masses poorly measured
- Top-quark charge undetermined!
- No conflict with experiment (yet)
- Parts (QED) in extremely good agreement with
experiment even with atomic physics! (Lamb
Shift, magnetic moments) - Elementary particle content reasonably small
17Dark corners of the Standard Model
18Standard Model Bad
Standard Model Good
- Higgs not yet found
- Quark mixing not over-constrained yet
- Top-quark charge undetermined!
- Quark masses poorly measured
- Fine-tuning / hierarchy problem (technical)
Why are particles light? - Does not explain Dark Matter
- No gauge coupling unification
- No conflict with experiment (yet)
- Parts (QED) in extremely good agreement with
experiment even with atomic physics! (Lamb
Shift, magnetic moments) - Elementary particle content reasonably small
New Physics, e.g. Supersymmetry, can help.
19Four Questions
- What might the new physics be?
- (2) What sort of experiment will help us?
- (3) How will we go about extracting answers from
the data? - (4) Can we trust the answers?
Will describe some later.
Coming next!
Very much the work of people in The Cavendish.
Are they robust?
20Large Hadron Collider (LHC)
21Collider nearing completion
22ATLAS Experiment
23Note concerning units
- eV electron-volt 1.6 x 10-19 J
- GeV 10 9 eV 1.6 x 10-10 J
- TeV 1012 eV 1.6 x 10-7 J
- ( K.E. of 1.3mg mosquito at 0.5 m/s)
- Express most particle energies and masses in GeV
- but LHC proton beams are 7 TeV each
(14 mosquitos in
total)
24Anatomy of the detector
Layered like Onion
Different layers for different types of particles
Neutrino
Muon
25So main things we can do
Average direction of things which were invisible
- Distinguish the following from each other
- Hadronic Jets,
- B-jets (sometimes)
- Electrons, Positrons, Muons, Anti-Muons
- Tau leptons (sometimes)
- Photons
- Measure Directions and Momenta of the above.
- Infer total transverse momentum of invisible
particles. (eg neutrinos)
electron
Here Be Monsters
Hadronic Jet
photon
26Muon Detector
MAGNETIC FIELD
MAGNETIC FIELD
Muons bend away from us. Anti-muons bend toward
us.
Man for scale
27Calorimetersand Central Solenoid
28Transition Radiation Tracker (TRT) tracks
charged particles and distinguishes electrons
from pions
29The SemiConductor Tracker (SCT)
Records tracks of charged particles
Most of the data-acquisition and
calibration/monitoring software designed and
written in Cambridge
Many components designed and built in The
Cavendish
30SCT contains 4088 Modules
10cm
768 sensitive-strip diodes per side. (200 V) 3
infra-red communication channels. Collisions
recorded _at_ 40MHz (every 25 ns)
Neutron bombardment will degrade silicon over
time. Individual strips will need
recalibration. Optical properties need
adjustment. May need to use redundant links.
31SCT Data Acquisition Software
- Present size
- 350,000 lines of code
- 6 developers
- Much still to be done
- Have managed to control 500 modules at once
- only 1/8th of final number
- multi-crate development - parallelisation
- Needs to become usable by non-experts
- Needs to recover from anomalies automatically
32Evidence that it will work
First cosmic rays seen in SCT and TRT!
PRELIMINARY
Data from morning of 18th May 2006
33Back to the new physics
- Fine-tuning / hierarchy problem (technical)
Why are particles light? - Does not explain Dark Matter
- No gauge coupling unification
Remember the aim was to fix some of these
problems with the Standard Model
- Possibilities
- Supersymmetry
- Minimal
- Non-minimal
- R-parity violating or conserving
- Extra Dimensional Models
- Large (SM trapped on brane)
- Universal (SM everywhere)
- With/without small black holes
- Littlest Higgs ?
- .
We will look at supersymmetry (SUSY)
34Supersymmetry!CAUTION!
- It may exist
- It may not
- First look for deviations from Standard Model!
Experiment must lead theory.
- Gamble
- IF DEVIATIONS ARE SEEN
- Old techniques wont work
- New physics not simple
- Can new techniques in SUSY but can apply them
elsewhere.
35What is Supersymmetry?
Reverse the charges, retain the spins.
Matter
Antimatter
Retain the charges,reverse the spins.(exchange
boson with fermions).
Supersymmetric Matter
For technical reasons each sparticle can be
heavier than its partner by no more than a TeV or
so.
36Great!
Neutralinos The collective name of the
supersymmetric partners of the photon, the
Z-boson and the higgs boson. LSP Lightest
Supersymetric Particle. Often the lightest
neutralino.
- Fix Hierarchy Problem
- The Lightest Neutralino (LSP) is a prime
candidate for neutral stable cold Dark Matter - Can have gauge coupling unification
OCDMh2 0.103 0.009(WMAP 3-year data)
37Unfortunately
- Doubling of particle content
- Conservation of R-parity
- LSPs generated in pairs
- LSPs invisible to ATLAS
- Large number of tuneable parameters
- Assume just five of them exist for the moment
unification arguments
38What might events look like?
What we can see
Here Be Monsters! (again)
What we can see
This is the high energy physics of the 21st
Century!
39(What they really look like)
b
soft gluon radiation?
An example of an event where a higgs boson
decayed to a pair of b-quarks/
b
40So main EASY signatures are
- Lots of missing energy
- Lots of leptons
- Lots of jets
-
- ATLAS Trigger ETmiss gt 70 GeV, 1 jetgt80 GeV.
(or 4 lower energy jets). Gives 20Hz at low
luminosity.
Just Count Events!
Indicates deviation from The Standard Model.
41- Papers for RAE ?
- Multidimensional likelihood maps
- String inspired susy models
- MT2 and friends
- Courses
- No need to revise
- Mathematics (all)
- Computational Physics
42Squark/gluon mass scale
What you measure
Peak of Meff distribution correlates well with
SUSY scale as defined above for mSUGRA and GMSB
models. (Tovey)
43The real test comes when you want to measure
individual masses etc.
44Technique 1 Kinematic Edges
Plot distributions of the invariant masses of
what you can see
45Technique 1 Kinematic Edges
46Technique 1 Kinematic Edges
- Account for all ambiguities
Both look the same to the detector
47Technique 1 Kinematic Edges
Use custom Markov-Chain algorithms to sample
efficiently from the high dimensional parameter
spaces of the model according to the Bayesian
posterior probability.
Shape of typical set is often something quite
horrible.
48Determine how edge positions depend on sparticle
masses
49Technique 1 Kinematic Endpoints
- Finally, project onto space of interest
Correlation between slepton mass measurement and
neutralino mass measurement.
Slepton mass
50Other Techniques
- Look at the shapes of the distributions
- Systematic errors harder to control
- Create new variables
- Cambridge MT2 Variablenow international used
methodfor sparticle mass measurementin pair
production - Incorporate cross sections and branching ratio
measurements - again, Cambridge leading the way as home to the
most developed samplers for H.E.P.
51Can even bring these techniques to bear on the
data we have today
- m0
- M1/2
- A0
- Tan beta
- Sgn mu
- mb
- mt
- as(Mz)
Quantity Measured value
ODMh2 (WMAP) 0.1126 0.0081 -0.0091
muon (g-2)/2 (19.0 9.4) 10-10
BR(b-gts ?) (3.52 0.42)10-4
mb 4.2 0.2 GeV
mt 172.7 2.9 GeV
as(Mz) 0.1187 0.002
SUSY params
SM params
522D Slices of 5D SUSY parameter space tell you
very little
Roszkowski et.al.
53Even worse newsStandard Model errors are very
important!
54Standard Model uncertainty
Top Quark Mass
Experiment mtop 178 4.3 GeV in 2006 (was
174.3 3.2 GeV in 2004)
mtop 170 GeV
mtop 180 GeV
55Standard Model uncertainty
Bottom Quark Mass
Experiment mbot 4.1 to 4.4 GeV in MS scheme
mbot 4.0 GeV
mbot 4.5 GeV
56 The parts of Supersymmetric Parameter Space are
consistent with Todays data
First analysis able to fold everything together
was from Cambridge Multi-Dimensional mSUGRA
Likelihood Maps, B.C. Allanach C.G. Lester
(Phys.Rev. D73 (2006) 015013)
57What if the Dark Matter isnt all SUSY?
Dark matter is just made of SUSY neutralinos
Other sources of Dark Matter allowed in addition
to SUSY
Favoured regions of SUSY model dont change an
awful lot! Prediction fairly robust.
58Future plans
- The whole programme is about the future.
- If we knew what the experiment will tell us we
wouldnt need to build it. Experiment must lead. - In short term, must continue to integrate further
with CERN physics analysis teams. - Analysis will be in collaboration
- In 10 years the SCT will have been radiation
damaged beyond repair, and the LHC may be
upgraded. - Need to start work on SCT version 2 long before
10 year lifetime of version 1 is reached - LHC luminosity upgrade will place more demands on
tracking systems - Cavendish HEP group in ideal position to play
leading role in that endeavour. - Must strive to draw maximum inference from LHC
data!
59Conclusions
- Expect new particles, new physics and other
discoveries at the LHC - May include a Dark Matter candidate ?
- Many competing physical theories
- Supersymmetry is one possibility
- There are many others
- (UED, Large Extra Dimensions, Littlest Higgs )
- An example experimental technique was presented
in the context of Supersymmetry - Kinematic endpoints and other measurements care
efficient sampling from Posterior Distribution
on parameter space - Supersymmetry may not be what nature has chosen!
- Techniques will be applicable to any theory with
large particle content and Dark Matter candidate
and to others too - Many more things I would like to have shown you
- How to measure particle spins and distinguish
SUSY from UED etc .
60The End, and the ATLAS Collaboration
Cambridge Office
Christopher Lester 2006
61Spare slides
62Posterior maps
63Progress in the last Century
- 19th Century
- 1897 Electron (Thomson)
- 20th Century
- 1911 Nucleus (Rutherford)
- 1930 Neutrino postulated (Pauli, beta decay)
- 1936 Muon (Anderson, cosmic rays)
- 1956 Neutrino observed (Cowan, Reines, et al)
- 1960s and 1970s Growing support for light quarks
- 1960s Higgs boson postulated
- 1970s Tau discovery
- 1996 Top quark discovered (Tevatron)
- 21st Century
- Somethings coming, something good, (West Side
Story)
25 year wait for neutrino
20-30 year wait for top quark
45 year wait for Higgs ??
64(No Transcript)
65Anatomy of a Detector
66(No Transcript)
67(No Transcript)
68ATLAS blind data challenge
- Didnt discover anything that wasnt there.
69What do events look like?
RPV
RPV
(Lepton number violating)
(Baryon number violating)
RPC
RPC
70The SCT Software
Various
and
GUIs
users
etc.
SctApi
Overall SCT Controller
VME Crate Controller
VME Crate Controller
VME Crate Controller
Module
Module
Module
Module
Module
Module
Module
Module
Module
71(No Transcript)