Title: Double Beta Decay - status and future
1Double Beta Decay - status and future
- Double beta decay basics
- Experimental challenges
- Current experimental status
- HM(HKK) result
- Future experimental programmes
- Dark matter and bb0n
Based on talks at ApPEC Peer Review of bb0n,
Nu2002 (heavily) .and a night in the Lamb
with Kai Züber and Roland
2Double Beta Decay
Cremonesi Nu2002
3bb0n Rates
Cremonesi Nu2002
4Why do bb0n?
Cremonesi Nu2002
5Experimental Considerations
Measure this
Cremonesi Nu2002
6Key Issues
- Multi-isotopic targets
- Redundancy, redundancy, redundancy (J. Bahcall)
- Background removal by different peak positions
(ie noise peak at Q) - Enrichment
- Radio-isotopic backgrounds
- Energy Resolution
- Discrimination
- Removal of gamma, beta, neutron backgrounds
- bb(2n) background irremovable (separate peaks)
- Co-location of daughter ion
- Theory
- Matrix elements
- Analysis techniques
- Esp. in light of H-M claim
7Current Experimental Limits
Cremonesi Nu2002
8Current Experimental Limits
Cremonesi Nu2002
9Heidelberg Moscow Experiment
Cremonesi Nu2002
10HM(HVKK) Result
Cremonesi Nu2002
11HM(HVKK) Result
Cremonesi Nu2002
12Comments on HM(HVKK)
Cremonesi Nu2002
13Reply to the comments on HM(HVKK)
Cremonesi Nu2002
14IGEX Canfranc
hep-ex 0202026
15Thermal detectors - Milano DB
Cremonesi Nu2002
16Milano DBD-II
Cremonesi Nu2002
17MDBD-II Results
Cremonesi Nu2002
18MDBD-II Background
Cremonesi Nu2002
19Proposed Experiments
Cremonesi Nu2002
20Proposed Experiments
- Half life normalised to 5 years operation
10s kg scale
Tonne scale
- Matrix element range. Half life for 50meV mass
(in 1026y)
Elliott and Vogel Ann. Rev. Nucl. Part. Sci. 52
(2002)
21Modularity and prototyping
- Modularity
- Discrimination through segmentation
- Increase in support materials
- GENIUS vs. Majorana
- Systematics checks
- Prototyping
- Direct scale-up of current technology wont
require prototyping - too expensive? - Prototype is first module
- All experiments involved in prototyping
- Handling scale up issues (cryostats, mass, etc)
- Handling readout options (laser tag, WLS fibres)
- Cross check against Monte Carlo
22NEMO-III
Cremonesi Nu2002
23NEMO-III
Cremonesi Nu2002
24CUORE
Cremonesi Nu2002
25CUORicino
Cremonesi Nu2002
26EXO - Xenon
Cremonesi Nu2002
27EXO - two approaches
Cremonesi Nu2002
28Majorana
Cremonesi Nu2002
29GENIUS
Cremonesi Nu2002
30GENIUS-TF
Cremonesi Nu2002
31GEM
Cremonesi Nu2002
32DCBA/COBRA
Cremonesi Nu2002
33Pros and Cons
Technique Prototyping MultiIsotope Enrichment Resolution Mass limit Discrimination Problems
CAMEO CdWO4 scintillator Use of B-CF 65kg array No Needed 10 1 tonne Active shield Enrichment costs
COBRA CdTe diodes Underway Yes No (?) lt1 10kg Segmemtation Neutron background
CUORE TeO2 Bolometer Cuoricino approved No Not needed (34 natural) 0.2 1 tonne Active shield Segmentation Materials close to target
EXO LXe or Xe TPC Approved (Ba tag test, 100kg Lxe) No Needed lt2 10 tonne Co-location of daughter PSD Cost of enrichment Ba ion extraction
GENIUS Naked HPGe Genius-TF approved No G-TF natural G 86 enrichment 0.3 1 tonne PSD Cost of enrichment Use of LN Cosmogenics
Majorana HPGe 1 Ge det under construction No Needed (8 -gt 86) 0.3 420kg Segmentation PSD Cost of enrichment
MOON Mo Scintillator WLS/Scint/Mo testing No Yes 7 3 tonne (34 tonnes nat. Mo) Localisation High Q (3.03MeV) Resolution
NEMO Tracking chamber Scintillator NEMO-I/II Yes Yes 10 10kg Tracking Time of flight Magnetic field Radioisotopic impurity Scale-up?
TGV HPGe CaCO3 foils TGV 1 (1g) No Required (73) 0.2 ? TGV-2 10g Enrichment from CaF2 Mass
34bb0n and dark matter
- Many common elements for rare event searches
- Theoretically prejudice for max sensitivity
required - DM 10-10pb covers most of SUSY models
- bb gt10 meV from oscillations
- Both require large mass targets (1 tonne)
- Low backgrounds required
- High radio-purity materials
- Good shielding
- Discrimination required
- DM nuclear vs. electron recoil, spatial
- bb spatial (co-location of daughter)
- Good resolution/threshold (high light yield,
etc.) - DM keV range - bite into DM spectrum
- bb MeV range - separate peaks at Q
- Can we do both in one detector?
- Xenon is an obvious candidate to consider within
U.K.
Beware!
35Xenon experience in UK/RAL
Gotthard Xe TPC DB experiment (Roland)
ZEPLIN dark matter programme (RAL, IC, Shef)
36ZEPLIN as bb0n experiment
- Developing ideas for combining dark matter and
bb0n experiments - Key issues are
- Energy scales of interest
- Primarily a DAQ issue, saturation of readouts,
etc. - Discrimination of backgrounds
- Can position sensitivity in ZEPLIN be improved to
check co-locality in DB? - Resolution at MeV scales
- Looks OK in second generation DM targets
- There is also bb capability
- 124Xe (0.1 in nat. Xe) is one of seven known
bb emitters - 2nb b gives 4x 511keV photon signal
- 2nbEC gives X-ray (30keV) and 2x 511keV photon
signal ( - 2nECEC gives 2x X-ray (30keV) signal
- Current limits for 124Xe are T0.52n gt 2x1014
years, T0.50n gt 4x1017 years
37Conclusions
- The bb0n decay search has the promise of
illuminating - Absolute mass scale of neutrinos
- (note this is effective mass, unlike beta end
point KATRIN) - Lepton number violation
- Majorana vs. Dirac description
- Current limits/claims 300meV
- H-M (HVKK) Claim contested
- Oscillation results encourage meV searches
- Several programmes suggested on Ge, Xe, Te, Mo
- Need large scale, good resolution,
discrimination, enrichment - Possibility of DM detectors as DB
- ZEPLIN programme?
- One mans background.