Title: Discrete Mathematics
1Discrete Mathematics
- Chapter 2 Basic Structures Sets, Functions,
Sequences, and Sums
???? ????? ???(Lingling Huang)
22-1 Sets
- Def 1 A set is an unordered collection of
objects. - Def 2 The objects in a set are called the
elements, or members of the set. - Example 5 ???????
- N 0,1,2,3, , the set of natural number
(???) - Z ,-2,-1,0,1,2, , the set of integers (??)
- Z 1,2,3, , the set of positive integers
(???) - Q p / q p ? Z , q ? Z , q?0 , the set
of rational numbers (???) - R the set of real numbers (??)
(??????1.234?????)
3- Def 4 A ? B iff ?x , x ? A ? x ? B ?? A ? B
??A ? B ? A ? B - Def 5 S a finite set
- The cardinality of S , denoted by S, is the
number of elements in S. - Def 7 S a set
- The power set of S , denoted by P(S), is the
set of all subsets of S. - Example 13 S 0,1,2
- P(S) ?, 0 , 1 , 2 , 0,1 , 0,2 ,
1,2 , 0,1,2 - Def 8 A , B sets The Cartesian Product of A
and B, denoted by A x B, is the set A x B
(a,b) a ? A and b ? B
4- Note. A x B A.B
- Example 16
- A 1,2 , B a, b, c
- A x B (1,a), (1,b), (1,c), (2,a), (2,b),
(2,c) - Exercise 5, 7, 8, 17, 21, 23
52-2 Set Operations
- Def 1,2,4 A,B sets
- A?B x x ? A or x ? B (union)
- AnB x x ? A and x ? B (intersection)
- A B x x ? A and x ? B (????A \ B)
- Def 3 Two sets A,B are disjoint if AnB ?
- Def 5 Let U be the universal set.
- The complement of the set A, denoted by A, is
the set U A. - Example 10 Prove that AnB A?B
- pf
- ?? Venn Diagram
6- Def 6 A1 , A2 , , An sets
-
- Let I 1,3,5 ,
- Def (p.131??) A,B sets
- The symmetric difference of A and B, denoted by
A?B, is the set - x x ? A - B or x ? B - A ( A?B ) - ( A
nB ) - ?Inclusion Exclusion Principle (????)
- A ? B A B - A n B
- Exercise 14, 45
72-3 Functions
- Def 1 A,B sets
- A function f A ? B is an assignment of
exactly one element of B to each element of A.
We write f(a) b if b is the unique element of
B assigned by f to a ? A. - eg.
A
B
A
B
1
a
a
1
ß
ß
2
2
?
3
?
Not a function
Not a function
8A
B
A
B
1
a
a
1
2
2
ß
ß
3
?
?
4
a function
a function
- Def (? f A?B ??,???)
- f (a) 1, f (ß) 4, f (?) 2
- 1 ??a?image (unique) , a??1?pre-image(not unique)
- A domain of f , B codomain of f
- range of f f (a) a ? A f (A) 1,2,4
(??B) - Example 4 f Z ? Z , f (x) x2 , ? f ?domain,
codomain - ?range?
9- Example 6 Let f1 R ? R and f2 R ? R s.t.
- f1(x) x2, f2(x) x - x2, What are the
function f1 f2 and f1 f2 ? - Sol
- ( f1 f2 )(x) f1(x) f2(x)
x2 ( x x2 ) x - (f1 f2)(x) f1(x).f2(x) x2( x
x2 ) x3 x4 - Def 5 A function f is said to be one-to-one, or
injective, iff f (x) ? f (y) whenever x ? y. - Example 8
f
g
A
B
A
B
1
1
a
a
2
2
b
b
3
3
c
d
4
4
5
c
d
5
is 1-1
not 1-1 , ? g(a) g(d) 4
10- Example 10 Determine whether the function f (x)
x 1 is one-to-one ? - Sol x ? y ? x 1 ? y 1
- ? f (x) ? f (y)
- ? f is 1-1
- Def 7 A function f A ? B is called onto, or
surjective, iff for every element b ? B , ?a ? A
with f (a) b. (? B ??????? f ???) - Example 11
Note ?A lt B ?,????onto.
11- Def 8 The function f is a one-to-one
correspondence, or a bijection, if it is both 1-1
and onto. - Examples in Fig 5
- ??? f A ?B
- (1) If f is 1-1 , then A B
- (2) If f is onto , then A B
- (3) if f is 1-1 and onto , then A B.
12- ?Some important functions
- Def 12
- floor function x x ?????,? x
- ceiling function x x ?????.
- Example 24
- ½ -½
7 - ½ -½
7 - Example 29
- factorial function
- f N ? Z , f (n) n! 1 x 2 x x n
- Exercise 1,12,17,19
132.4 Sequences and Summations
- ?Sequence (??)
- Def 1. A sequence is a function f from A ? Z
- (or A ? N) to a set S. We use an to
denote f(n), and call an a term (?) of
the sequence. - Example 1. an , where an 1/n , n ? Z
- ? a1 1, a2 1/2 , a3
1/3, - Example 2. bn , where bn (-1)n, n ? N
- ? b0 1, b1 -1 , b2
1,
14- Example 7. How can we produce the terms of a
sequence if the first 10 terms are 5, 11, 17,
23, 29, 35,41, 47, 53, 59? - Sol
- a1 5
- a2 11 5 6
- a3 17 11 6 5 6 ? 2
-
-
- ? an 5 6 ? (n-1) 6n-1
15- Example 8. Conjecture a simple formula for an
if - the first 10 terms of the sequence an are
- 1, 7, 25, 79, 241, 727, 2185, 6559, 19681, 59047?
- Sol
- ???????
- ??????????3
- ? ????? 3n ?
- ??
- 3n 3, 9, 27, 81, 243, 729, 2187,
- an 1, 7, 25, 79, 241, 727, 2185,
- ? an 3n - 2 , n ? 1
16- ? Summations
-
- Here, the variable j is call the index of
summation, m is the lower limit, and n is the
upper limit.
Example 10. Example 13. (Double summation)
17- Example 14.
- Table 2. Some useful summation formulae
-
18- ?Cardinality
- Def 4. The sets A and B have the same cardinality
(size) if and only if there is a one-to-one
correspondence (1-1 and onto function) from A to
B. - Def 5. A set that is either finite or has the
same - cardinality as Z (or N) is called countable
(??). - A set that is not countable is called
uncountable. -
19Example 18. Show that the set of odd positive
integers is a countable set.
20Example 19. Show that the set of positive
rational number (Q) is countable.
Pf Q a / b a, b? Z
(Figure 2)
? Z 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ,
9 Q
Exercise 9,13,17,42
(??,? ?? ,? ??)
?Note. R is uncountable. (Example 21)