Chapter 5 Overview - PowerPoint PPT Presentation

1 / 87
About This Presentation
Title:

Chapter 5 Overview

Description:

Title: Ch5CSDA.ppt Subject: Computer Systems Design and Architecture Author: Vincent Heuring, Harry Jordan Last modified by: mcokyilmaz Created Date – PowerPoint PPT presentation

Number of Views:103
Avg rating:3.0/5.0
Slides: 88
Provided by: Vincent203
Category:

less

Transcript and Presenter's Notes

Title: Chapter 5 Overview


1
Chapter 5 Overview
  • The principles of pipelining
  • A pipelined design of SRC
  • Pipeline hazards
  • Instruction-level parallelism (ILP)
  • Superscalar processors
  • Very Long Instruction Word (VLIW) machines
  • Microprogramming
  • Control store and micro-branching
  • Horizontal and vertical microprogramming

2
Bölüm 5 Genel Bakis
  • Pipeline mimarisinin esaslari
  • SRC nin pipeline tasarimi
  • Pipeline riskleri
  • Instruction-level parallelism (ILP)
  • Superscalar islemciler
  • Very Long Instruction Word (VLIW) makineleri
  • Microprogramming
  • Control store ve micro-branching
  • Horizontal(Yatay) ve vertical(Dikey)
    microprogramming

3
Fig 5.1 Executing Machine Instructions vs.
Manufacturing Small Parts
4
The Pipeline Stages
  • 5 pipeline stages are shown
  • 1. Fetch instruction
  • 2. Fetch operands
  • 3. ALU operation
  • 4. Memory access
  • 5. Register write
  • 5 instructions are executing
  • shr r3, r3, 2 storing result in r3
  • sub r2, r5, r1 idle, no mem. access needed
  • add r4, r3, r2 adding in ALU
  • st r4, addr1 accessing r4 and addr1
  • ld r2, addr2 instruction being fetched

5
Pipeline Asamalari
  • 5 pipeline asamasi
  • 1. Fetch instruction
  • 2. Fetch operands
  • 3. ALU islemleri
  • 4. Bellek erisimi
  • 5. Register yazma
  • 5 komut isleniyor
  • shr r3, r3, 2 sonuç r3 e depolanir
  • sub r2, r5, r1 idle, bellek ulasimina gerek yok
  • add r4, r3, r2 ALU da toplama
  • st r4, addr1 r4 ve addr1 e ulasilmasi
  • ld r2, addr2 komutun getirilmesi

6
Notes on Pipelining Instruction Processing
  • Pipeline stages are shown top to bottom in order
    traversed by one instruction
  • Instructions listed in order they are fetched
  • Order of insts. in pipeline is reverse of listed
  • If each stage takes one clock
  • - every instruction takes 5 clocks to
    complete
  • - some instruction completes every clock tick
  • Two performance issues instruction latency, and
    instruction bandwidth

7
Pipeline Komut Isleme
  • Pipeline stages are shown top to bottom in order
    traversed by one instruction
  • Komutlar fetch edildigi sirada listelenir.
  • Pipeline da komutlarun sirasi listenin
    tersinedir.
  • Eger her asama bir clock tutarsa
  • - her komut 5 clock da tamamlanir
  • - her clock da komut bitimi
  • Iki performans konusu komut gecikme süresi, ve
    komut bant gensiligi

8
Dependence Among Instructions
  • Execution of some instructions can depend on the
    completion of others in the pipeline
  • One solution is to stall the pipeline
  • early stages stop while later ones complete
    processing
  • Dependences involving registers can be detected
    and data forwarded to instruction needing it,
    without waiting for register write
  • Dependence involving memory is harder and is
    sometimes addressed by restricting the way the
    instruction set is used
  • Branch delay slot is example of such a
    restriction
  • Load delay is another example

9
Komutlar Arasindaki Bagimlilik
  • Pipeline da bazi komutlarin islenmesi,
    digerlerinin bitimine baglidir.
  • Bir çözüm stall (bekletme) dir
  • Ilk asamalar, sonrakiler islemlerini bitirirken,
    beklerler.
  • Register lari içeren bagliliklar, register
    yazmasi beklenmeden, tespit edilebiilir ve veri
    kendine ihitiyaç olunan komuta forward edilir.
  • Bellek içeren bagliliklar daha zordur ve
    kullanilacak komut kümesi yolunda kistlamalar
    olusturabilir.
  • Branch delay slot bu tip bir kistlamaya örnek
    olabilie.
  • Load delay bir diger örnektir

10
Branch and Load Delay Examples
Branch Delay
brz r2, r3 add r6, r7, r8 st r6, addr1
This inst. always executed
Only done if r3 ? 0
Load Delay
ld r2, addr add r5, r1, r2 shr r1,r1,4 sub r6,
r8, r2
This inst. gets old value of r2
This inst. gets r2 value loaded from addr
  • Working of instructions not changed, but way they
    work together is

11
Branch ve Load Gecikme Örnekleri
Branch Gecikmesi
brz r2, r3 add r6, r7, r8 st r6, addr1
Bu komut herzaman islenir
Sadece r3, 0 olmazsa (r3 ? 0)
Load Gecikmesi
ld r2, addr add r5, r1, r2 shr r1,r1,4 sub r6,
r8, r2
Bu komut r2 nin eski degerini alir
Bu komut addr den r2 ye yüklenen degeri alir
  • Komutlarin çalismasi degismez, fakat birlikte
    çalisma yolu degisebilir.

12
Characteristics of Pipelined Processor Design
  • Main memory must operate in one cycle
  • This can be accomplished by expensive memory, but
  • It is usually done with cache, to be discussed in
    Chap. 7
  • Instruction and data memory must appear separate
  • Harvard architecture has separate instruction
    data memories
  • Again, this is usually done with separate caches
  • Few buses are used
  • Most connections are point to point
  • Some few-way multiplexers are used
  • Data is latched (stored in temporary registers)
    at each pipeline stagecalled pipeline
    registers.
  • ALU operations take only 1 clock (esp. shift)

13
Pipeline Islemci Tasariminin Özellikleri
  • Ana bellek tek cycle da islenmeli
  • Pahali bellek kullanilmasi gerekir, fakat
  • Bu islem cache ile genelde yapilir , to be
    discussed in Chap. 7
  • Komut ve veri bellegi ayri görülmelidir
  • Harvard mimarisi ayri komut ve veri belleklerine
    sahiptir.
  • Bu genelde ayri cache lerde yapilir.
  • Az miktar da veri yolu kullanilir
  • Pek çok baglanti point to point dir.
  • Bazi few-way multiplexers(çoklayici) kullanilir.
  • Veri, her pipeline asamasinda tutulur (geçici
    registera depolanir) called pipeline
    registers.
  • ALU islemleri sadece 1 clock alir. (esp. shift)

14
Adapting Instructions to Pipelined Execution
  • All instructions must fit into a common pipeline
    stage structure
  • We use a 5 stage pipeline for the SRC
  • 1) Instruction fetch
  • 2) Decode and operand access
  • 3) ALU operations
  • 4) Data memory access
  • 5) Register write
  • We must fit load/store, ALU, and branch
    instructions into this pattern

15
Komutlarin Pipeline Olarak Islenmeye Adapte
Edilmesi
  • Bütün komutlar genel bir pipeline asama yapisina
    uymak zorundadir.
  • Biz SRC için 5 asamali pipeline mimarisi
    kullancagiz
  • 1) Instruction fetch
  • 2) Decode ve operand ulasimi
  • 3) ALU islemleri
  • 4) Veri Bellegine Ulasim
  • 5) Register yazma
  • Biz load/store, ALU ve branch komutlarini bu
    yapiya uygun hale getirecegiz.

16
Fig 5.2 ALU Instructions fit into 5 Stages
  • Second ALU operand comes either from a register
    or instruction register c2 field
  • Op code must be available in stage 3 to tell ALU
    what to do
  • Result register, ra, is written in stage 5
  • No memory operation

17
Fig 5.2 ALU Komutu 5 asamada
  • Ikinci ALU islemi register dan veya c2 den
    gelebilir.
  • Op code 3. asamada ALU ya ne yapilacagini
    söylemesi için hazir olmalidir.
  • Somuç registeri ra ya 5. asamada yazilir.
  • Bellek islemi yoktur.

18
Fig 5.4 Load and Store Instructions
  • ALU computes effective addresses
  • Stage 4 does read or write
  • Result reg. written only on load

19
Fig 5.4 Load ve Store Komutlari
  • ALU computes effective addresses
  • Asama 4 read veya write yapar
  • Sonuç reg. Sadece load da yazilir.

20
Fig 5.6 SRC Pipeline Registers and RTN
Specification
  • The pipeline registers pass info. from stage to
    stage
  • RTN specifies output reg. values in terms of
    input reg. values for stage
  • Discuss RTN at each stage on blackboard

21
Fig 5.6 SRC Pipeline Registers and RTN
Specification
  • pipeline registerlar asamadan asamaya bilgi
    geçirirler.
  • RTN asamlar için output reg. degerlerini, input
    reg degerleri açisindan belirtir.
  • Discuss RTN at each stage on blackboard

22
Global State of the Pipelined SRC
  • PC, the general registers, instruction memory,
    and data memory is the global machine state
  • PC is accessed in stage 1 ( stage 2 on branch)
  • Instruction memory is accessed in stage 1
  • General registers are read in stage 2 and written
    in stage 5
  • Data memory is only accessed in stage 4

23
Pipeline SRC de Global State
  • PC, the general registers, komut bellegi, and
    veri bellegi global makine durumudur.
  • PC ye asama 1 de ulasilir. ( asama 2 on branch)
  • Komut bellegine ye asama 1 de ulasilir.
  • Genel registers asama 2 de okunur ve asama 5 de
    yazilir.
  • Veri bellegine sadece asama 4 de ulasilir.

24
Restrictions on Access to Global State by Pipeline
  • We see why separate instruction and data memories
    (or caches) are needed
  • When a load or store accesses data memory in
    stage 4, stage 1 is accessing an instruction
  • Thus two memory accesses occur simultaneously
  • Two operands may be needed from registers in
    stage 2 while another instruction is writing a
    result register in stage 5
  • Thus as far as the registers are concerned, 2
    reads and a write happen simultaneously
  • Increment of PC in stage 1 must be overridden by
    a successful branch in stage 2

25
Pipeline Global State e ulasimda ki Kisitlamalar
  • Neden ayri komut ve veri bellekleri
    kullandigimizi gördük
  • Bir load veya store komutu stage 4 de veri
    bellegine ulasirken, asama 1 de bir komut a
    ulasilir.
  • Böylece iki bellek ulasimi es zamanli meydana
    gelir.
  • Asama 2 de register larin 2 tane operand ihtiyaci
    varken, bir diger komut asama 5 de sonuç register
    ina veri yazar.
  • Böylece 2 read ve 1 write islemi es zaamnli
    olarak gerçeklesir.
  • Asama 2 deki basarili bir branch islemi, asama 1
    de PC nin artirilmasini zorunlu kilar.

26
Fig 5.7 Pipeline Data Path Control Signals
  • Most control signals shown and given values
  • Multiplexer control is stressed in this figure

27
Fig 5.7 Pipeline Data Path Control Signals
  • Pek çok kontrol sinyali ve degerleri
  • Çoklayici kontrolü bu figürde ön plana
    çikartilmistir.

28
Example of Propagation of Instructions Through
Pipe
100 add r4, r6, r8 R4 ? R6
R8 104 ld r7, 128(r5) R7 ?
MR5128 108 brl r9, r11, 001 PC ? R11
R9 ? PC 112 str r12, 32 MPC32 ?
R12 . . . . . . 512 sub ... next
instruction
  • It is assumed that R11 contains 512 when the
    brl instruction is executed
  • R6 4 and R8 5 are the add operands
  • R5 16 for the ld and R12 23 for the str

29
Pipe Isleminde komutlarin yayilmasina örnekler
100 add r4, r6, r8 R4 ? R6
R8 104 ld r7, 128(r5) R7 ?
MR5128 108 brl r9, r11, 001 PC ? R11
R9 ? PC 112 str r12, 32 MPC32 ?
R12 . . . . . . 512 sub ... Sonraki
komut
  • brl komutu islendigi zaman, R11 in 512 içermesi
    beklenir
  • R6 4 ve R8 5 add operandlaridir.
  • R5 16 ld için ve R12 23 str için

30
Fig 5.8 Cycle 1 add Enters Pipe
  • Program counter is incremented to 104

512 sub ... . . . . . . 112 str r12,
32 108 brl r9, r11, 001 104 ld r7, r5,
128 100 add r4, r6, r8
31
Fig 5.8 Cycle 1 add Enters Pipe
  • PC 104 e artitilir.

512 sub ... . . . . . . 112 str r12,
32 108 brl r9, r11, 001 104 ld r7, r5,
128 100 add r4, r6, r8
32
Fig 5.9 Cycle 2ld Enters Pipe
  • add operands are fetched in stage 2

512 sub ... . . . . . . 112 str r12,
32 108 brl r9, r11, 001 104 ld r7, r5,
128 100 add r4, r6, r8
33
Fig 5.9 Cycle 2ld Enters Pipe
  • Asama 2 de add operandlari getirildi.

512 sub ... . . . . . . 112 str r12,
32 108 brl r9, r11, 001 104 ld r7, r5,
128 100 add r4, r6, r8
34
Fig 5.10 Cycle 3 brl Enters Pipe
  • add performs its arithmetic in stage 3

512 sub ... . . . . . . 112 str r12,
32 108 brl r9, r11, 001 104 ld r7, r5,
128 100 add r4, r6, r8
35
Fig 5.10 Cycle 3 brl Enters Pipe
  • Asama 3 de add aritmetik islemini yerine getirir

512 sub ... . . . . . . 112 str r12,
32 108 brl r9, r11, 001 104 ld r7, r5,
128 100 add r4, r6, r8
36
Fig 5.11 Cycle 4str enters pipe
  • add is idle in stage 4
  • Success of brl changes program counter to 512

512 sub ... . . . . . . 112 str r12,
32 108 brl r9, r11, 001 104 ld r7, r5,
128 100 add r4, r6, r8
37
Fig 5.11 Cycle 4str enters pipe
  • add asama 4 deki gibi aynidir
  • Brl PC yi 512 ye degistirir.

512 sub ... . . . . . . 112 str r12,
32 108 brl r9, r11, 001 104 ld r7, r5,
128 100 add r4, r6, r8
38
Fig 5.12 Cycle 5 sub Enters Pipe
  • add completes in stage 5
  • sub is fetched from loc. 512 after successful brl

512 sub ... . . . . . . 112 str r12,
32 108 brl r9, r11, 001 104 ld r7, r5,
128 100 add r4, r6, r8
39
Fig 5.12 Cycle 5 sub Enters Pipe
  • add asama 5 de tamamlanir
  • Brl den sonra, sub 512 location indan alip
    getirilir.

512 sub ... . . . . . . 112 str r12,
32 108 brl r9, r11, 001 104 ld r7, r5,
128 100 add r4, r6, r8
40
Functions of the SRC Pipeline Stages
  • Stage 1 fetches instruction
  • PC incremented or replaced by successful branch
    in stage 2
  • Stage 2 decodes inst. and gets operands
  • Load or store gets operands for address
    computation
  • Store gets register value to be stored as 3rd
    operand
  • ALU operation gets 2 registers or register and
    constant
  • Stage 3 performs ALU operation
  • Calculates effective address or does
    arithmetic/logic
  • May pass through link PC or value to be stored in
    mem.

41
SRC Pipeline Asamalrinin Fonksiyonlari
  • Asama 1 komutun alip getirilmesi (fetch)
  • PC arttirilir veya asama 2 de basarili bir branch
    (dallanma) ile yenilenir.
  • Asama 2 komutun decode edilmesi ve operandlarin
    alinmasi
  • Load veya store, adres hesaplamasi için
    operandalri alir
  • Store 3. operand olarak depolancak register
    degerini alir
  • ALU islemi 2 register veya 1 register ve 1 sabit
    alir.
  • Asama 3 ALU isleminin gerçeklestirilmesi
  • Effective adres hesaplanir veya arithmetic/logic
    islemler yapilir
  • PC veya bellekde depolanmis degere geçis olabilir.

42
Functions of the SRC Pipeline Stages (continued)
  • Stage 4 accesses data memory
  • Passes Z4 to Z5 unchanged for non-memory
    instructions
  • Load fills Z5 from memory
  • Store uses address from Z4 and data from MD4(no
    longer needed)
  • Stage 5 writes result register
  • Z5 contains value to be written, which can be ALU
    result, effective address, PC link value, or
    fetched data
  • ra field always specifies result register in SRC

43
SRC Pipeline Asamalrinin Fonksiyonlari
  • Asama 4 veri bellegine ulasilmasi
  • Bellek kullanilmayan komutlarda Z4 ve Z5
    degismeden geçilir.
  • Store, Z4 den adres ve MD4 den veriyi kullanir
  • Asama 5 sonuç registerin yazilmasi
  • Z5 yazilacak degeri tutar, bu deger ALU result,
    effective address, PC link value, veya fetched
    data olabilir.
  • SRC de ra alani genelde sonuç register olarak
    belirtilir.

44
Dependence Between Instructions in Pipe Hazards
  • Instructions that occupy the pipeline together
    are being executed in parallel
  • This leads to the problem of instruction
    dependence, well known in parallel processing
  • The basic problem is that an instruction depends
    on the result of a previously issued instruction
    that is not yet complete
  • Two categories of hazards
  • Data hazards incorrect use of old and new data
  • Branch hazards fetch of wrong instruction on a
    change in PC

45
Komutlar Arasindaki Bagliliklar in Pipe Hazards
  • Pipeline da komutlar paralel olarak isletilir.
  • Paralel islemede, bu durum komutlarin birbirine
    baglilik problemine sebep olur.
  • Temel problem, bir komutun çalismasinin,
    çalismasini bitirmemis baska bir komutun
    islenmesi sonucu ortaya çikacak olan sonuca bagli
    olmasindan ileri gelir.
  • Hatalari iki kategoride inceleriz
  • Veri hazards eski ve yeni verinin yanlis
    kullanimi
  • Dallanma (Branch) hazards PC de ki degisim
    sonucunda yanlis komutun fetch edilmesi

46
General Classification of Data Hazards(Not
Specific to SRC)
  • A read after write hazard (RAW) arises from a
    flow dependence, where an instruction uses data
    produced by a previous one
  • A write after read hazard (WAR) comes from an
    anti-dependence, where an instruction writes a
    new value over one that is still needed by a
    previous instruction
  • A write after write hazard (WAW) comes from an
    output dependence, where two parallel
    instructions write the same register and must do
    it in the order in which they were issued

47
Veri Hazard larinin Genel Siniflandirilmasi
  • A read after write hazard (RAW) arises from a
    flow dependence,
  • bir komutun bir önceki komut tarafindan
    olusturulan veriyi kullanmasi gereken durumda
    olusur.
  • A write after read hazard (WAR) comes from an
    anti-dependence,
  • bir komutun yeni bir degeri bir yere yazarken,
    oradan hala bir önceki komutun deger almasi
    gerekiyorsa olusur.
  • A write after write hazard (WAW) comes from an
    output dependence, iki paralel komutun ayni
    registera yazma durumlari varsa, bu islemleri
    isleme sirasina göre yapmalri gerekir.

48
Detecting Hazards and Dependence Distance
  • To detect hazards, pairs of instructions must be
    considered
  • Data is normally available after being written to
    reg.
  • Can be made available for forwarding as early as
    the stage where it is produced
  • Stage 3 output for ALU results, stage 4 for mem.
    fetch
  • Operands normally needed in stage 2
  • Can be received from forwarding as late as the
    stage in which they are used
  • Stage 3 for ALU operands and address modifiers,
    stage 4 for stored register, stage 2 for branch
    target

49
Hatalarin Tespit Edilmesi ve Bagimlilik Mesafesi
  • Hatalarin ayiklanmasi için komut çifti
    bilinmelidir
  • Veri normalde reg. e yazildiktan sonra uygun
    olur.
  • Forwarding islemi asamalarda gerektigi anda en
    erken biçimde yapilmalidir
  • asama 3 ALU sonucu için output, asama 4 bellek
    fetch için
  • Operandlar normalde asama 2 için ihtiyaç olurlar
  • Can be received from forwarding as late as the
    stage in which they are used
  • Asama 3 ALU operandlari ve adres modifierlari
    için, asama 4 depolama register için, asama 2
    branch target için

50
Data Hazards in SRC
  • Since all data memory access occurs in stage 4,
    memory writes and reads are sequential and give
    rise to no hazards
  • Since all registers are written in the last
    stage, WAW and WAR hazards do not occur
  • Two writes always occur in the order issued, and
    a write always follows a previously issued read
  • SRC hazards on register data are limited to RAW
    hazards coming from flow dependence
  • Values are written into registers at the end of
    stage 5 but may be needed by a following
    instruction at the beginning of stage 2

51
SRC de Veri Hatalari
  • Bütün veri bellek ulasimi asama 4 de oldugu için,
    bellek yazma ve okuma ardisik olur ve hata olusma
    riski azalir.
  • Bütün register lara son asamada yazma islemi
    oldugundan WAW ve WAR hatalari olusmaz
  • Iki yazma genelde isleme sirasinda göre olur, ve
    bir write genelde bir önceki islenen read
    islemini takip eder.
  • Register verisi üzerindeki SRC hatalari RAW
    hatasi ile sinirlidir.
  • Asama 5 in sonunda register lara yazilan degerler
    bir sonraki komutda asama 2 nin basinda ihtiyaç
    duyulabilirler.

52
Possible Solutions to the Register Data Hazard
Problem
  • Detection
  • The machine manual could list rules specifying
    that a dependent instruction cannot be issued
    less than a given number of steps after the one
    on which it depends
  • This is usually too restrictive
  • Since the operation and operands are known at
    each stage, dependence on a following stage can
    be detected
  • Correction
  • The dependent instruction can be stalled and
    those ahead of it in the pipeline allowed to
    complete
  • Result can be forwarded to a following inst. in
    a previous stage without waiting to be written
    into its register
  • Preferred SRC design will use detection,
    forwarding and stalling only when unavoidable

53
Register Data Hazard Problemleri için Muhtemel
Çözümler
  • Tespit Edilmesi
  • The machine manual could list rules specifying
    that a dependent instruction cannot be issued
    less than a given number of steps after the one
    on which it depends
  • This is usually too restrictive
  • Islemler ve operandlar her asamada bilindigi
    için, bir sonraki asamada ki bagimliklik tespit
    edilebilir.
  • Dogrulanmasi
  • Bagimli komut bekletilmelidir (stall) ve those
    ahead of it in the pipeline allowed to complete
  • Sonuç, bir önceki asamda registerlara yazma
    islemi beklenmeden bir sonraki komuta
    iletilmelidir.(forwarding)
  • Tercih edilen SRC tasarimi detection, forwarding
    ve stalling kullacaktir.

54
RAW, WAW, and WAR Hazards
  • RAW hazards are due to causality one cannot use
    a value before it has been produced.
  • WAW and WAR hazards can only occur when
    instructions are executed in parallel or out of
    order.
  • Not possible in SRC.
  • Are only due to the fact that registers have the
    same name.
  • Can be fixed by renaming one of the registers or
    by delaying the updating of a register until the
    appropriate value has been produced.

55
RAW, WAW, ve WAR Hazards
  • RAW hazards nedenseldir biri bir degeri
    kullanmamalidir, o deger olusturulmadan önce
  • WAW ve WAR hazards sadece komutlar paralel ve ya
    sira disinda çalistirildiklarinda olusur.
  • SRC de mümkün degildir.
  • Sadece register larin ayni isimlerde olmasi
    durumuda
  • Bir register in yeniden adlandirilmasiyla veya
    register in güncellenmesini uygun degerin
    üretilmesine kadar erteleterek düzeltilir.

56
Tbl 5.1 Instruction Pair Hazard Interaction
Write to Reg. File
Result Normally/Earliest available
Read from Reg. File
Class alu load ladr brl N/E 6/4 6/5 6/4 6/2
Class N/L alu 2/3 load 2/3 ladr 2/3 store 2/3 bran
ch 2/2
4/1 4/2 4/1 4/1 4/1 4/2 4/1 4/1 4/1 4/2 4/1 4/1 4/
1 4/2 4/1 4/1 4/2 4/3 4/2 4/1
Value Normally/ Latest needed
Instruction separation to eliminate hazard,
Normal/Forwarded
  • Latest needed stage 3 for store is based on
    address modifier register. The stored value is
    not needed until stage 4
  • Store also needs an operand from ra. See Text Tbl
    5.
  • Instruction separation is used rather than
    bubbles because of the applicability to
    multi-issue, multi-pipelined machines.

57
Tbl 5.1 Instruction Pair Hazard Interaction
Write to Reg. File
Result Normally/Earliest available
Read from Reg. File
Class alu load ladr brl N/E 6/4 6/5 6/4 6/2
Class N/L alu 2/3 load 2/3 ladr 2/3 store 2/3 bran
ch 2/2
4/1 4/2 4/1 4/1 4/1 4/2 4/1 4/1 4/1 4/2 4/1 4/1 4/
1 4/2 4/1 4/1 4/2 4/3 4/2 4/1
Value Normally/ Latest needed
Instruction separation to eliminate hazard,
Normal/Forwarded
  • Store için en son ihtiyaç duyulan asama 3 adres
    modifier register a baglidir. Depolanan deger
    asama 4 e kadar ihtiyaç olunmaz.
  • Store ra dan bir operand a ihtiyaç duyar. See
    Text Tbl 5.
  • Komut ayristirma baloncuklarin yerine kullanilir,
    multi-issue, multi-pipeline makinelerinin
    uygulanabilirlikleri sebebiyle.

58
Delays Unavoidable by Forwarding
  • In the column headed by load, we see the value
    loaded cannot be available to the next
    instruction, even with forwarding
  • Can restrict compiler not to put a dependent
    instruction in the next position after a load
    (next 2 positions if the dependent instruction is
    a branch)
  • Target register cannot be forwarded to branch
    from the immediately preceding instruction
  • Code is restricted so that branch target must not
    be changed by instruction preceding branch
    (previous 2 instructions if loaded from mem.)
  • Do not confuse this with the branch delay slot,
    which is a dependence of instruction fetch on
    branch, not a dependence of branch on something
    else

59
Forwarding ile önlenemeyen Gecikmeler
  • Load sütununda, forwarding olmasina ragmen,
    yüklenen degerin bir sonraki komut için hazir
    olmayacagini görüyoruz.
  • restrict compiler load dan sonra bagimli bir
    komut koymazlar (eger bagimli komut branch ise
    sonraki 2 pozisyon için)
  • Hedef reg. , önceki komutdan branch e forward
    edilmeyebilir.
  • Kode kisitlanmistir, böylece dallanma hedefi,
    önceki branch e göre degismemelidir. (eger
    bellekden yüklendiyse önceki 2 komut)
  • Bunu, dallanma gecikmesiyle karistimayniz. which
    is a dependence of instruction fetch on branch,
    not a dependence of branch on something else

60
Stalling the Pipeline on Hazard Detection
  • Assuming hazard detection, the pipeline can be
    stalled by inhibiting earlier stage operation and
    allowing later stages to proceed
  • A simple way to inhibit a stage is a pause signal
    that turns off the clock to that stage so none of
    its output registers are changed
  • If stages 1 2, say, are paused, then something
    must be delivered to stage 3 so the rest of the
    pipeline can be cleared
  • Insertion of nop into the pipeline is an obvious
    choice

61
Hata Tespitinde Pipeline i Bekletme
  • Hata tespitini düsünün, pipeline ilk asamalarin
    islemini azlatmak ve sonraki asamlari ilerletmek
    için bekletilsin.
  • Bir asamayi engellemenin basit yolu durma sinyali
    dir. Bu sinyal a asama için clock u durdurur ve o
    asamanin output reg. lerinin degismesini önler.
  • Eger asama 1 ve 2 durdurulursa, pipeline in geri
    kalan kismi temizlenir.
  • Pipeline a nop göndermek belirli bir tercih
    olabilir.

62
Fig 5.14 Stall Due to a Dependence Between Two
alu Instructions
63
Restrictions Left If Forwarding Done Wherever
Possible
br r4 add . . . ld r4, 4(r5) nop neg r6,
r4 ld r0, 1000 nop nop br r0 not r0, r1 nop br
r0
  • 1) Branch delay slot
  • The instruction after a branch is always
    executed, whether the branch succeeds or not.
  • 2) Load delay slot
  • A register loaded from memory cannot be used as
    an operand in the next instruction.
  • A register loaded from memory cannot be used as a
    branch target for the next two instructions.
  • 3) Branch target
  • Result register of alu or ladr instruction cannot
    be used as branch target by the next instruction.

64
Restrictions Left If Forwarding Done Wherever
Possible
br r4 add . . . ld r4, 4(r5) nop neg r6,
r4 ld r0, 1000 nop nop br r0 not r0, r1 nop br
r0
  • 1) Branch delay slot
  • Branch den sonraki komut herzaman islenir, branch
    basarili olsun ya da olmasin.
  • 2) Load delay slot
  • Bellekden yüklenen register bir sonraki register
    in operand i olarak kullanilmayabilir.
  • Bellekden yüklenen bir reg. bir sonraki komut
    için dallanma hedefi olmaz.
  • 3) Branch target
  • Alu ve ladr komutlari sonuç reg. bir sonraki
    komut için dallanma hedefi olmaz.

65
Instruction Level Parallelism
  • A pipeline that is full of useful instructions
    completes at most one every clock cycle
  • Sometimes called the Flynn limit
  • If there are multiple function units and multiple
    instructions have been fetched, then it is
    possible to start several at once
  • Two approaches are superscalar
  • Dynamically issue as many prefetched instructions
    to idle function units as possible
  • and Very Long Instruction Word (VLIW)
  • Statically compile long instruction words with
    many operations in a word, each for a different
    function unit
  • Word size may be 128 or 256 or more bits.

66
Komut Düzeyi Paralelligi
  • Komutlaral dolu bir pipeline her clok cycle da en
    fazla bir komut bitirir.
  • Sometimes called the Flynn limit
  • Eger multiple fonksiyon birimleri ve komutlari
    fetch edildiyse, bir kerede birden fazlasina
    baslanmasi mümkün olur.
  • Iki yaklasim vardir superscalar
  • Dynamically issue as many prefetched instructions
    to idle function units as possible
  • ve Very Long Instruction Word (VLIW)
  • Statically compile long instruction words with
    many operations in a word, each for a different
    function unit
  • Word size may be 128 or 256 or more bits.

67
Character of the Function Units in Multiple Issue
Machines
  • There may be different types of function units
  • Floating point
  • Integer
  • Branch
  • There can be more than one of the same type
  • Each function unit is itself pipelined
  • Branches become more of a problem
  • There are fewer clock cycles between branches
  • Branch units try to predict branch direction
  • Instructions at branch target may be prefetched,
    and even executed speculatively, in hopes the
    branch goes that way

68
Character of the Function Units in Multiple Issue
Machines
  • Farkli fonksiyon brimleri vardir
  • Floating point
  • Integer
  • Branch
  • Birden fazla ayni tip olabilir
  • Her fonksiyon birimi kendinden pipeline
    edilmistir
  • Branch ler daha çok problem olurlar
  • Branchler arasinda daha az clock cycle lari
    vardir
  • Branch birimleri dallanma yönünü tahmin etmeye
    çalisirlar
  • Dallanma hedefindeki komutlar prefetch edilebilr,
    ve kurgusal olarak islenebilirler

69
Figure 5.16 Structure of the Dual-Pipeline SRC
70
Figure 5.19 Dual-Issue SRC Pipelines and
Forwarding Paths
71
Microprogramming Basic Idea
  • Recall control sequence for 1-bus SRC

Step Concrete RTN Control Sequence T0. MA ? PC
C ? PC4 PCout, MAin, Inc4, Cin, Read T1. MD ?
MMA PC ? C Cout, PCin, Wait T2. IR ?
MD MDout, IRin T3. A ? Rrb Grb, Rout,
Ain T4. C ? A Rrc Grc, Rout, ADD,
Cin T5. Rra ? C Cout, Gra, Rin, End
  • Control unit job is to generate the sequence of
    control signals
  • How about building a computer to do this?

72
Microprogramming Basic Idea
  • Kontrol dizisini 1-bus SRC için yeniden çagiralim

Step Concrete RTN Control Sequence T0. MA ? PC
C ? PC4 PCout, MAin, Inc4, Cin, Read T1. MD ?
MMA PC ? C Cout, PCin, Wait T2. IR ?
MD MDout, IRin T3. A ? Rrb Grb, Rout,
Ain T4. C ? A Rrc Grc, Rout, ADD,
Cin T5. Rra ? C Cout, Gra, Rin, End
  • Kontrol biriminin görevi kontrol sinyalleri
    dizisinin olusturulmasidir
  • Bunu yapacak bir bilgisayar nasil yapilir?

73
The Microcode Engine
  • A computer to generate control signals is much
    simpler than an ordinary computer
  • At the simplest, it just reads the control
    signals in order from a read only memory
  • The memory is called the control store
  • A control store word, or microinstruction,
    contains a bit pattern telling which control
    signals are true in a specific step
  • The major issue is determining the order in which
    microinstructions are read

74
The Microcode Engine
  • Kontrol sinyalleri olsturan bir bilgisayar,
    normal bir bilgisayara göre daha basittir.
  • Basit olarak, sadece kontrol sinyallerini
    bellekten bir read ile okur.
  • Bellek, control store (kontrol deposu) olarak
    adlandirilir.
  • control store word, veya microinstruction,
    belirli bir basamak için kontrol sinyallerinin
    dogrulugunu söyleyen bit pattern leri içeriler
  • Ana islem microinstruction larin okunma sirasina
    kara verilmesidir.

75
Fig 5.22 Block Diagram of a Microcoded Control
Unit
  • Microinstruction has branch control, branch
    address, and control signal fields
  • Micro-program counter can be set from several
    sources to do the required sequencing

76
Fig 5.22 Block Diagram of a Microcoded Control
Unit
  • Microinstruction branch control, branch address,
    ve control signal alanlarina sahiptir.
  • Micro-program counter beklenen dizilemeyi yapamak
    için pekçok kaynaktan set edilebilir.

77
Parts of the Microprogrammed Control Unit
  • Since the control signals are just read from
    memory, the main function is sequencing
  • This is reflected in the several ways the ?PC can
    be loaded
  • Output of incrementer?PC1
  • PLA outputstart address for a macroinstruction
  • Branch address from ?instruction
  • External sourcesay for exception or reset
  • Micro conditional branches can depend on
    condition codes, data path state, external
    signals, etc.

78
Microprogrammed Control Biriminin Parçalari
  • Kontrol sinyalleri sadece bellekten okundugu
    için, ana fonksiyon bunlarin siralanmasidir
  • This is reflected in the several ways the ?PC can
    be loaded
  • Output of incrementer?PC1
  • PLA outputmacroinstruction için baslangiç adresi
  • ?instruction için branch adresi
  • External source exception ve reset için
  • Micro durumlu branch ler durum kodlarina, veri
    yolu durumuna , harici sinyalere...v.b. seylere
    baglidir.

79
Contents of a Microinstruction
  • Main component is list of 1/0 control signal
    values
  • There is a branch address in the control store
  • There are branch control bits to determine when
    to use the branch address and when to use ?PC1

80
Microinstruction Içerigi
  • Ana component 1/0 kontrol sinyal degerleridir.
  • control store da bir tane branch adresi vardir.
  • ?PC1 ve branch adreslerinin ne zaman
    kullanilacagina karar vermeye yarayan branch
    kontrol bit leri vardir.

81
Figure 5.23 Layout of the Control Store
  • Common inst. fetch sequence
  • Separate sequences for each (macro) instruction
  • Wide words

82
Figure 5.23 Control Store un Tasarimi
  • Genel komut fetch dizisi
  • Her komut için ayrik diziler
  • Wide words

83
Horizontal Versus Vertical Microcode Schemes
  • In horizontal microcode, each control signal is
    represented by a bit in the ?instruction
  • In vertical microcode, a set of true control
    signals is represented by a shorter code
  • The name horizontal implies fewer control store
    words of more bits per word
  • Vertical ?code only allows RTs in a step for
    which there is a vertical ?instruction code
  • Thus vertical ?code may take more control store
    words of fewer bits

84
Horizontal Versus Vertical Microcode Schemes
  • horizontal microcode da, ?instruction daki her
    kontrol sinyali bir bit ile ifade edilir
  • vertical microcode da, dogru kontrol sinyali
    kümesi daha kisa bir kod ile ifade edilir
  • horizontal ismi daha az kontrol deposu word
    lerinin word basina daha fazla bit ile ifade
    edilmesi anlamini tasir.
  • Vertical ?code sadece vertical ?instruction
    kodunda bir basamaktaki RT lere izin verir.
  • Böylece, vertical ?code daha az bit ile daha
    fazla kontrol deposu word ü alabilir.

85
Fig 5.25 A Somewhat Vertical Encoding
  • Scheme would save (167) - (43) 16 bits/word
    in the case illustrated

86
Saving Control Store Bits With Horizontal
Microcode
  • Some control signals cannot possibly be true at
    the same time
  • One and only one ALU function can be selected
  • Only one register out gate can be true with a
    single bus
  • Memory read and write cannot be true at the same
    step
  • A set of m such signals can be encoded using
    log2m bits (log2(m1) to allow for no signal
    true)
  • The raw control signals can then be generated by
    a k to 2k decoder, where 2k m (or 2k m1)
  • This is a compromise between horizontal and
    vertical encoding

87
Horizontal Microcode ile Kontrol Deposu Bit
lerinin Korunmasi
  • Bazi kontrol sinyalleri muhtemel olarak ayni
    zamanda dogru olmayabilir.
  • One and only one ALU function can be selected
  • Sadece bir out gate register dogru olabilir
    single bus ile.
  • Bellek read ve write ayni basamakta dogru
    olmayabilirler.
  • m sinyal kümesi log2m kullanilarak encode
    yapilabilir. (log2(m1) to allow for no signal
    true)
  • raw control sinyalleri k to 2k decoder ile
    olusturulabilir,
  • 2k m olmak sartiyla (veya 2k m1)
  • Bu vertical ve horizontal encode lama arasindaki
    uyumdur.
Write a Comment
User Comments (0)
About PowerShow.com