Title: Ultrafast Carrier Dynamics in Single-Walled Carbon Nanotubes
1Ultrafast Carrier Dynamics in Single-Walled
Carbon Nanotubes
Friday, August 27, 2004
UC Santa Barbara
Yusuke Hashimoto Dept. of ECE, Rice University,
Houston, USA Graduate school of Science and
Technology, Chiba University, Chiba, Japan
2Outline
- Introduction to Carbon Nanotubes
- Micelle Suspension
- Pump-probe in Isolated SWNT
- Pump-probe in Vertically Aligned SWNT
- Summary Future Work
3Carbon Nanotubes
Extremely large aspect ratio
? ultimate quantum wire
1 nm
up to 1 cm
Exploration of 1-D physics
Large variety
1s
Metal Semiconductor
hn
4Single-Walled Carbon Nanotubes
Ch na mb
n m 3M n
2) M ? 0, n 0
Narrow Gap Semicond.
3) M ? 0, n ?1
Metallic
Semiconducting
Large Gap Semicond.
5Chiral Vector and Unit Cell
Ch na mb(n, m)
A
a
O
b
(4. 2)
6Classification of Carbon Nanotubes
Ch na1 ma2(n, m)
Armchair (n, n)
a1
Zigzag (n, 0)
a2
Chiral (n, m)
n ? m ? 0
7Outline
- Introduction to Carbon Nanotubes
- Micelle Suspension
- Pump-probe in Isolated SWNT
- Pump-probe in Vertically Aligned SWNT
- Summary Future Work
8Bundled Carbon Nanotubes
9Problem Coexistence and Electronic Coupling of
Different (n,m) Tubes
E
E3
E2
E1
DOS
H1
H2
100 meV
H3
M. Ichida et al., J. Phys. Soc. Jpn. 68, 3131
(1999).
10Carrier Relaxation Dynamics in Bundled Carbon
Nanotubes
Bundled SWNTs
Metallic
Semiconductor
C. B
J-S. Lauret et al., Phys. Rev. Lett. 90 057404
(2003)
t lt 1 ps
V. B
11Isolation of the Carbon Nanotubes
Sonicate
Soap solution
O'Connell et al., Science 297, 26 (2002)
12Individually-Suspended SWNTs
SWNT
D2O
SDS
O'Connell et al., Science 297, 26 (2002)
Produced by HiPco ? Dispersed in 1 D2O solution
of Sodium Dodecyl Sulfate (SDS) ? Sonicated ?
Centrifuged
13Photo-Induced CarrierRelaxation Dynamics
Isolated SWNTs
Bundled SWNTs
Metallic
Semiconductor
C. B
C. B
V. B
V. B
t ns
t lt 1 ps
14PL Excitation (PLE) Spectroscopy
Each peak corresponds to particular (n,m)
emission
excitation
E
15Allowed Optical Transitionsfor Isolated SWNTs
Dn 0
See, T. Ando, Electronic States and Transport in
Carbon Nanotubes.
16Outline
- Introduction to Carbon Nanotubes
- Micelle Suspension
- Pump-probe in Isolated SWNT
- Pump-probe in Vertically Aligned SWNT
- Summary Future Work
17Single-Walled Carbon Nanotubesphoto-induced
carrier lifetimes
18Relaxation Dynamics ofPhoto-excited Carriers in
SWNTs
- Tube-tube interaction
- Catalyst particles at the tube ends
- Nonradiative recombination via surface defects
- etc.
Our previous study used a high-peak power OPA
laser t lt 20 ps
Auger type recombination ? Phononed assist
relaxation ? Catalyst-particle-mediated
? Exciton-exciton interaction ?
1mJ/cm2
Exciton-exciton interaction ?
t 10 ps 1 30 mJ/cm2 (0.89eV) G. N. Ostojic
et al., Phys. Rev. Lett. 92, 117402 (2004) t
0.06 5.7 mJ/cm2 Y.-Z. Ma et al., J. Chem. Phys.
120, 3368 (2004) A. Hagen et al., Appl. Phys. A
78, 1137 (2004) t 7 ps 0.002 mJ/cm2 F. Wang
et al., Phys. Rev. Lett. 92, 177401 (2004)
Purpose Photo-induced carrier relaxation
dynamics in the low excitation limit
1 e-h pair per 1 mm SWNT
19Single-Walled Carbon Nanotube Samples
Absorption spectrum
Raman spectrum
SDS miscelled SWNT
SWNT
Excited SWNTs are (12,5), (12,1), (11,3)
(10,5), (9,8), (9,7)
SDS micelle
Science VOL 297 593 (2002)
20Experimental Setup
Excitation fluence 100 nJ/cm2 Pump Probe 10
1
21Checking the Experimental Setup
GaAs
Polarization of the pump and probe pulse
No difference
22Photo-Induced Carrier Dynamics in SWNTin Low
Excitation Limit
Previous reports in high excitation t lt 120 ps
Pump-probe signal exists even at 1 nano-second !!!
23Decay Dynamics
1 t lt 1 ps
2 t 1 ns
24Decay Dynamics
E2H2 ? E1H1 intraband transition
E1H1 carrier recombination
25Polarization Memory
Polarization memory exists even at 1 ns !!!
In bundled SWNT, the polarization decay time 10
ps O. J. Korovyanko et al., Phys. Rev. Lett. 92
017403 (2004)
26Polarization Memory
n ? I pump cos2q
27Outline
- Introduction to Carbon Nanotubes
- Micelle Suspension
- Pump-probe in Isolated SWNT
- Pump-probe in Vertically Aligned SWNT
- Summary Future Work
28Vertically Aligned Carbon Nanotubes
29Why do we usevertically aligned carbon nanotubes
?
Vertically aligned carbon nanotubes
Individually suspended carbon nanotubes
Randomly oriented
30Optical Selection Rules in Bundled Carbon
Nanotubes
Parallel polarization
Dn 0
e. g. H0 ? E0 H1 ? E1 H2 ? E2
31Sample
Two kinds of plasmon peaks
32Experimental setup
Lens f 100 mm
Si detector
25 mm
SWNT
Aperture
Delay stage (300 ps)
Excitation fluence 640 nJ/cm2 Excitation power
10 mW Focus size 50 mm Pump Probe 10 1
Lock in
33Photo-induced carrier dynamicsin vertically
aligned carbon nanotubes
Time delay ps
P ? 0.44 Polarization memory
34Discussion
n ? I pump cos2q
P 0.5 0.44 (exp.)
35Summary
Band structure optical properties of
CNTs Photo-induced carrier dynamics Isolated
SWNTs t 1 ns Polarization
memory Vertically aligned SWNTs t 1
ps Polarization memory
36Question
E2H2 ? E1H1 intraband transition
E1H1 carrier recombination
37Future work
Nature of Transient Absorption Polarization
Dependence Spin Injection
38Acknowledgement
Rice University Kono group Spectroscopy D. C.
Larrabee, G. N. Ostojic, A. Srivastava, R.
Srivastava, C. Sun, J. Wang, S. Zaric, D. V.
Orden, C. Wong, X. Wang, G. A. Khodaparast, and
J. Kono Smalley group Sample growth (Isolated
SWNTs) J. Shaver, V. C. Moore, R. H.
Hauge, and R. E. Smalley Tokyo
University Maruyama group Sample growth
(Vertically aligned SWNTs) Y. Murakami
and S. Maruyama