Title: Poc
1PocÃtacové simulace rozhranà pevná látka-kapalina
Milan Predota Katedra zdravotnické fyziky a
biofyziky ZSF JU
2PrÃklad 2D Isinguv model
SHOWISI.EXE
Program DEMO (demo.zip) lze stáhnout z www
stránky JirÃho Kolafy http//home.icpf.cas.cz/jiri
/
3Connection between experiment and theory
REAL SYSTEM
MODEL SYSTEM
MAKE MODEL
CONSTRUCT APPROXIMATE THEORY
PERFORM EXPERIMENT
EXPERIMENTAL RESULTS
THEORETICAL PREDICTION
COMPARE
APPROXIMATE MODEL OR THEORY ?
4Connection between experiment and theory
REAL SYSTEM
MODEL SYSTEM
MAKE MODEL
CARRY OUT COMPUTER SIMULATION
CONSTRUCT APPROXIMATE THEORY
PERFORM EXPERIMENT
EXPERIMENTAL RESULTS
EXACT RESULTS FOR MODEL
THEORETICAL PREDICTION
COMPARE
COMPARE
TEST OF MODEL
TEST OF THEORY
51. Predictive capabilities
REAL SYSTEM
MODEL SYSTEM
MAKE MODEL
CARRY OUT COMPUTER SIMULATION
CONSTRUCT APPROXIMATE THEORY
PERFORM EXPERIMENT
EXPERIMENTAL RESULTS
EXACT RESULTS FOR MODEL
THEORETICAL PREDICTION
COMPARE
COMPARE
TEST OF MODEL
TEST OF THEORY
6MeOHCO2 t50oC
72. Development of theory
REAL SYSTEM
MODEL SYSTEM
MAKE MODEL
CARRY OUT COMPUTER SIMULATION
CONSTRUCT APPROXIMATE THEORY
PERFORM EXPERIMENT
EXPERIMENTAL RESULTS
EXACT RESULTS FOR MODEL
THEORETICAL PREDICTION
COMPARE
COMPARE
TEST OF MODEL
TEST OF THEORY
8Micellar solubilization
92. Development of theorySystem
water/surfactant/oil
- Water/Surfactant/Oil systems were modeled by
Larson, 1985 - Effective interaction
103. Get insight to phenomena
REAL SYSTEM
MODEL SYSTEM
MAKE MODEL
CARRY OUT COMPUTER SIMULATION
CONSTRUCT APPROXIMATE THEORY
PERFORM EXPERIMENT
EXPERIMENTAL RESULTS
EXACT RESULTS FOR MODEL
THEORETICAL PREDICTION
COMPARE
COMPARE
TEST OF MODEL
TEST OF THEORY
11Klasifikace simulacÃ
spojitého prostredÃ
molekulárnÃ
stavová rovnice Navier-Stokes Poisson-Boltzmann ve
denà tepla ...
elektronová struktura ? kvantové simulace
atomárnà struktura (B.-O.) ? klasické simulace
12Klasické molekulárnà simulace
modely se spojitými souradnicemi
diskrétnà modely
Monte Carlo
Monte Carlo
molekulárnà dynamika
13Monte Carlo (MC)
- Strednà hodnoty velicin jsou urceny souborovým
stredovánÃm (NVT, NPT, mVT) posloupnosti
konfiguracà generovaných náhodne s fyzikálne
urcenou pravdepodobnostà za použità generátoru
(pseudo)náhodných cÃsel - Stochastická metoda
- Primárne urcena pro rovnovážné simulace
- Posloupnost generovaných konfiguracà se obecne
jen podobá casovému vývoji nebo mu vubec
neodpovÃdá - Vhodná pro spojité i diskrétnà systémy, spojité i
nespojité potenciály
14Monte Carlo (MC) algoritmus
- Vygeneruj (stochasticky) zmenu konfigurace
- Zmena polohy cástice, zmena objemu, poctu cástic
- Spocti pravdepodobnost prijetà nové konfigurace
- Prijmi/neprijmi novou konfiguraci s vypoctenou
pravdepodobnostà - Ad 2. (zmena polohy), Metropolisuv algoritmus
- Ad 3.
prijmi novou konfiguraci neprijmi novou
konfiguraci
15Molekulárnà dynamika (MD)
- Modeluje realistický casový vývoj modelového
systému - Dynamika diktována fyzikálnÃmi zákony
- Strednà hodnoty velicin jsou urceny casovým
stredovánÃm konfiguracà - Deterministická metoda
- Vhodná pro rovnovážné i nerovnovážné simulace
- Použitelná pouze pro spojité systémy, nevhodná
pro nespojité potenciály
16Verletuv algoritmus MD
?
?
17Verletuv algoritmus MD
r
18Demonstracnà programy
Program SIMOLANT 2002 lze stáhnout z www stránky
JirÃho Kolafy http//www.vscht.cz/fch/software/si
molant/index-cz.html
19Molecular dynamics simulations
- Initiation
- Calculation of forces
- Propagation
- Measurement
- Finalization
- Typical timestep
- 1 fs 10-15 s
- Typical desired length of simulation
- at least 1 ns (10-9 s)
- biological systems 1??s 1 s ?? course grained
techniques - Typical number of MD steps
- at least 106
-
20Calculation of forces
- Pair potential interactions
- N atoms ?N(N-1)/2 pair interactions
- 10 000 atoms ? 50 mil. pairs
21Computational resources
- Oak Ridge National Laboratory
- 704 processors 375MHz (1.3 GFlops)
- 864 processors 1.3 GHz
- National Energy Research Scientific Computing
CenterBerkeley - 2944 processors 1.5 GFlops
- nodes16 procs
22(No Transcript)
23(No Transcript)
24(No Transcript)
25(No Transcript)
26Negatively charged rutile surface, ? -0.2
C/m2Nonhydroxylated
Hydroxylated
OH-
terminal hydroxyl
hydroxylated terminal Ti
H
deprotonated bridging oxygen
27Study of adsorption of ions at interfaces
- rubidium
- chloride
- oxygen
- titanium
28Model and potentials
- Rigid nonpolarizable model of water 2048 SPC/E
molecules - Ions (Rb,Na, Sr2, Ca2, Zn2) point charges
LJ potential - S. H. Lee and J. C. Rasaiah, JPC 100, 1420 (1996)
- B. J. Palmer, D. M. Pfund, and J. L. Fulton, JPC
100, 13393 (1996) - Structure and charges of TiO2 surface - ab initio
calculations - Matsui and Akaogi potential for bulk TiO2 (Mol.
Sim. 6, 239 (1991)) - Relaxed surface structure and optimized
water-TiO2 potentials potentials - A. V. Bandura, D. G. Sykes, J. D. Kubicki, JPC B
108, 7844 (2004)
29(No Transcript)
30Water at the interface
- Diffusivity of water as a function of distance
from the surface - Parallel component Dxy and perpendicular
component Dz - Determination of contact and diffuse layers
- Axial density profile of oxygen
- Good agreement with X-ray data for all surfaces
31Axial density profiles of ions
- Comparison of MD results with XSWand CTR
experimental data - Better agreement for hydroxylated surface
Hydrox.
Nonhydrox.
32Lateral alignment of ions at negative surface
33Rubidium
34Strontium
35Zinc
36Adsorption sites from MD and X-ray
37Diffusivity profiles
Diffusivity calculated from mean square
displacement for times t1.2 ps to 2.4 ps ?
linear dependence, molecule does not diffuse to
distant bins ? local diffusivity
exp. value _at_ 298 K 2.7 10-9 m2/s
38Viscosity of water at 25 C, neutral surface, pure
water
39Axial profiles of electrostatics