Poc - PowerPoint PPT Presentation

About This Presentation
Title:

Poc

Description:

Po ta ov simulace rozhran pevn l tka-kapalina Milan P edota Katedra zdravotnick fyziky a biofyziky ZSF JU – PowerPoint PPT presentation

Number of Views:116
Avg rating:3.0/5.0
Slides: 40
Provided by: Miros64
Category:
Tags: poc | rutile

less

Transcript and Presenter's Notes

Title: Poc


1
Pocítacové simulace rozhraní pevná látka-kapalina
Milan Predota Katedra zdravotnické fyziky a
biofyziky ZSF JU
2
Príklad 2D Isinguv model
SHOWISI.EXE
Program DEMO (demo.zip) lze stáhnout z www
stránky Jirího Kolafy http//home.icpf.cas.cz/jiri
/
3
Connection between experiment and theory
REAL SYSTEM
MODEL SYSTEM
MAKE MODEL
CONSTRUCT APPROXIMATE THEORY
PERFORM EXPERIMENT
EXPERIMENTAL RESULTS
THEORETICAL PREDICTION
COMPARE
APPROXIMATE MODEL OR THEORY ?
4
Connection between experiment and theory
REAL SYSTEM
MODEL SYSTEM
MAKE MODEL
CARRY OUT COMPUTER SIMULATION
CONSTRUCT APPROXIMATE THEORY
PERFORM EXPERIMENT
EXPERIMENTAL RESULTS
EXACT RESULTS FOR MODEL
THEORETICAL PREDICTION
COMPARE
COMPARE
TEST OF MODEL
TEST OF THEORY
5
1. Predictive capabilities
REAL SYSTEM
MODEL SYSTEM
MAKE MODEL
CARRY OUT COMPUTER SIMULATION
CONSTRUCT APPROXIMATE THEORY
PERFORM EXPERIMENT
EXPERIMENTAL RESULTS
EXACT RESULTS FOR MODEL
THEORETICAL PREDICTION
COMPARE
COMPARE
TEST OF MODEL
TEST OF THEORY
6
MeOHCO2 t50oC
7
2. Development of theory
REAL SYSTEM
MODEL SYSTEM
MAKE MODEL
CARRY OUT COMPUTER SIMULATION
CONSTRUCT APPROXIMATE THEORY
PERFORM EXPERIMENT
EXPERIMENTAL RESULTS
EXACT RESULTS FOR MODEL
THEORETICAL PREDICTION
COMPARE
COMPARE
TEST OF MODEL
TEST OF THEORY
8
Micellar solubilization
9
2. Development of theorySystem
water/surfactant/oil
  • Water/Surfactant/Oil systems were modeled by
    Larson, 1985
  • Effective interaction

10
3. Get insight to phenomena
REAL SYSTEM
MODEL SYSTEM
MAKE MODEL
CARRY OUT COMPUTER SIMULATION
CONSTRUCT APPROXIMATE THEORY
PERFORM EXPERIMENT
EXPERIMENTAL RESULTS
EXACT RESULTS FOR MODEL
THEORETICAL PREDICTION
COMPARE
COMPARE
TEST OF MODEL
TEST OF THEORY
11
Klasifikace simulací
spojitého prostredí
molekulární
stavová rovnice Navier-Stokes Poisson-Boltzmann ve
dení tepla ...
elektronová struktura ? kvantové simulace
atomární struktura (B.-O.) ? klasické simulace
12
Klasické molekulární simulace
modely se spojitými souradnicemi
diskrétní modely
Monte Carlo
Monte Carlo
molekulární dynamika
13
Monte Carlo (MC)
  • Strední hodnoty velicin jsou urceny souborovým
    stredováním (NVT, NPT, mVT) posloupnosti
    konfigurací generovaných náhodne s fyzikálne
    urcenou pravdepodobností za použití generátoru
    (pseudo)náhodných císel
  • Stochastická metoda
  • Primárne urcena pro rovnovážné simulace
  • Posloupnost generovaných konfigurací se obecne
    jen podobá casovému vývoji nebo mu vubec
    neodpovídá
  • Vhodná pro spojité i diskrétní systémy, spojité i
    nespojité potenciály

14
Monte Carlo (MC) algoritmus
  • Vygeneruj (stochasticky) zmenu konfigurace
  • Zmena polohy cástice, zmena objemu, poctu cástic
  • Spocti pravdepodobnost prijetí nové konfigurace
  • Prijmi/neprijmi novou konfiguraci s vypoctenou
    pravdepodobností
  • Ad 2. (zmena polohy), Metropolisuv algoritmus
  • Ad 3.

prijmi novou konfiguraci neprijmi novou
konfiguraci
15
Molekulární dynamika (MD)
  • Modeluje realistický casový vývoj modelového
    systému
  • Dynamika diktována fyzikálními zákony
  • Strední hodnoty velicin jsou urceny casovým
    stredováním konfigurací
  • Deterministická metoda
  • Vhodná pro rovnovážné i nerovnovážné simulace
  • Použitelná pouze pro spojité systémy, nevhodná
    pro nespojité potenciály

16
Verletuv algoritmus MD
?
?
17
Verletuv algoritmus MD
r
18
Demonstracní programy
Program SIMOLANT 2002 lze stáhnout z www stránky
Jirího Kolafy http//www.vscht.cz/fch/software/si
molant/index-cz.html
19
Molecular dynamics simulations
  • Initiation
  • Calculation of forces
  • Propagation
  • Measurement
  • Finalization
  • Typical timestep
  • 1 fs 10-15 s
  • Typical desired length of simulation
  • at least 1 ns (10-9 s)
  • biological systems 1??s 1 s ?? course grained
    techniques
  • Typical number of MD steps
  • at least 106

20
Calculation of forces
  • Pair potential interactions
  • N atoms ?N(N-1)/2 pair interactions
  • 10 000 atoms ? 50 mil. pairs
  • Parallelization

21
Computational resources
  • Oak Ridge National Laboratory
  • 704 processors 375MHz (1.3 GFlops)
  • 864 processors 1.3 GHz
  • National Energy Research Scientific Computing
    CenterBerkeley
  • 2944 processors 1.5 GFlops
  • nodes16 procs

22
(No Transcript)
23
(No Transcript)
24
(No Transcript)
25
(No Transcript)
26
Negatively charged rutile surface, ? -0.2
C/m2Nonhydroxylated
Hydroxylated
OH-
terminal hydroxyl
hydroxylated terminal Ti
H
deprotonated bridging oxygen
27
Study of adsorption of ions at interfaces
  • rubidium
  • chloride
  • oxygen
  • titanium
  • hydrogen

28
Model and potentials
  • Rigid nonpolarizable model of water 2048 SPC/E
    molecules
  • Ions (Rb,Na, Sr2, Ca2, Zn2) point charges
    LJ potential
  • S. H. Lee and J. C. Rasaiah, JPC 100, 1420 (1996)
  • B. J. Palmer, D. M. Pfund, and J. L. Fulton, JPC
    100, 13393 (1996)
  • Structure and charges of TiO2 surface - ab initio
    calculations
  • Matsui and Akaogi potential for bulk TiO2 (Mol.
    Sim. 6, 239 (1991))
  • Relaxed surface structure and optimized
    water-TiO2 potentials potentials
  • A. V. Bandura, D. G. Sykes, J. D. Kubicki, JPC B
    108, 7844 (2004)

29
(No Transcript)
30
Water at the interface
  • Diffusivity of water as a function of distance
    from the surface
  • Parallel component Dxy and perpendicular
    component Dz
  • Determination of contact and diffuse layers
  • Axial density profile of oxygen
  • Good agreement with X-ray data for all surfaces

31
Axial density profiles of ions
  • Comparison of MD results with XSWand CTR
    experimental data
  • Better agreement for hydroxylated surface

Hydrox.
Nonhydrox.
32
Lateral alignment of ions at negative surface
  • rubidium

33
Rubidium
34
Strontium
35
Zinc
36
Adsorption sites from MD and X-ray
37
Diffusivity profiles
Diffusivity calculated from mean square
displacement for times t1.2 ps to 2.4 ps ?
linear dependence, molecule does not diffuse to
distant bins ? local diffusivity
exp. value _at_ 298 K 2.7 10-9 m2/s
38
Viscosity of water at 25 C, neutral surface, pure
water
39
Axial profiles of electrostatics
Write a Comment
User Comments (0)
About PowerShow.com