Duality/Sensitivity-1 - PowerPoint PPT Presentation

About This Presentation
Title:

Duality/Sensitivity-1

Description:

Duality Theory The Essence Every linear program has another linear program associated with it: Its dual The dual complements the original linear program, the ... – PowerPoint PPT presentation

Number of Views:175
Avg rating:3.0/5.0
Slides: 30
Provided by: Berk135
Category:

less

Transcript and Presenter's Notes

Title: Duality/Sensitivity-1


1
Duality Theory
2
The Essence
  • Every linear program has another linear program
    associated with itIts dual
  • The dual complements the original linear program,
    the primal
  • The theory of duality provides many insights into
    what is happening behind the scenes

3
Primal and Dual
  • Primal
  • Decision variables x
  • max Z cx
  • s.to Ax ? b n
  • x ? 0 m
  • Dual
  • Decision variables y
  • min W yb
  • s.to yA ? c m
  • y ? 0 n

4
Primal and Dual - ExampleStandard Algebraic Form
  • Primal
  • Dual

Max Z 3x1 5x2 s. to x1 4 2x2
12 3x1 2x2 18 x1,x2 0
Min W 4y1 12y2 18y3 s. to y1 3y3
3 2y2 2y3 5 y1, y2, y3 0
5
Primal and Dual - ExampleMatrix Form
  • Primal
  • Dual

6
Symmetry Property
  • For any primal problem and its dual problem, all
    relationships between them must be symmetric
    because

7
Duality Theorem
  • The following are the only possible relationships
    between the primal and dual problems
  • If one problem has feasible solutions and a
    bounded objective function (and so has an optimal
    solution), then so does the other problem, so
    both the weak and the strong duality properties
    are applicable
  • If one variable has feasible solutions but an
    unbounded objective function (no optimal
    solutions), then the other problem has no
    feasible solutions
  • If one variable has no feasible solutions, then
    the other problem either has no feasible
    solutions or an unbounded objective function

8
Relationships between Primal and Dual
  • Weak duality property If x is a feasible
    solution to the primal, and y is a feasible
    solution to the dual, then cx ? yb
  • Strong duality property If x is an optimal
    solution to the primal, and y is an optimal
    solution to the dual, then cx yb

9
Complementary Solutions
  • At each iteration, the simplex method identifies
  • x, a BFS for the primal, and
  • a complementary solution y, a BS for the dual
    (which can be found from the row coefficients
    under slack variables)
  • For any primal feasible (but suboptimal) x, its
    complementary solution y is dual infeasible, with
    cxyb
  • For any primal optimal x, its complementary
    solution y is dual optimal, withcxyb

10
Complementary Slackness
  • Associated variables between primal and dual

Primal (original variable) xj (slack
variable) xsni
Dual ysmj (surplus variable) yi (original
variable)
  • Complementary slackness propertyWhen one
    variable in primal is basic, its associated
    variable in dual is nonbasic

Primal (m variables) basic (n variables)
nonbasic
Dual nonbasic (m variables) basic (n variables)
11
Primal and Dual
Primal Zcx
Dual Wyb
superoptimal
suboptimal
(optimal) Z
W (optimal)
superoptimal
suboptimal
12
Insight
B.V. Z Original Variables Original Variables Original Variables Original Variables Slack Variables Slack Variables Slack Variables r.h.s.
B.V. Z x1 x2 xn xsn1 xsnm r.h.s.
Z 1 cBB-1A-c cBB-1A-c cBB-1A-c cBB-1A-c cBB-1 cBB-1 cBB-1 cBB-1b
xB 0 B-1A B-1A B-1A B-1A B-1 B-1 B-1 B-1b
B.V. Z Original Variables Original Variables Original Variables Original Variables Slack Variables Slack Variables Slack Variables r.h.s.
B.V. Z x1 x2 xn xsn1 xsnm r.h.s.
Z 1 yA-c yA-c yA-c yA-c y y y yb
xB 0 B-1A B-1A B-1A B-1A B-1 B-1 B-1 B-1b
13
A More Detailed Look at Sensitivity
  • We are interested in the optimal solution
    sensitivity to changes in model parameters
  • Coefficients aij, cj
  • Right hand sides bi
  • If we change the model parameters, how does it
    affect
  • Feasibility?
  • If violated, then primal infeasible, but may be
    dual feasible
  • Optimality?
  • If violated, then dual infeasible, but may be
    primal feasible

14
General Procedure for Sensitivity Analysis
  • Revise the model
  • Calculate changes to the original final tableau
  • Covert to the proper form using Gaussian
    elimination
  • Feasibility Test Is the new right-hand-sides ? 0
    ?
  • Optimality Test Is the new row-0 coefficients ?
    0 ?
  • Reoptimization
  • If feasible, but not optimal, continue solving
    with the primal simplex method
  • If not feasible, but satisfies optimality,
    continue solving with thedual simplex method
  • If feasible and satisfies optimality, then
    calculate new x and Z

15
Example of Sensitivity Analysis
Original model Max Z 3x1 5x2 s. to x1
4 2x2 12 3x1 2x2 18 x1,x2 0
Revised model Max Z 4x1 5x2 s. to x1
4 2x2 24 2x1 2x2 18 x1,x2 0
  • Original final simplex tableau

Basic variable Z x1 x2 s1 s2 s3 r.h.s.
Z 1 0 0 0 3/2 1 36
s1 0 0 0 1 1/3 -1/3 2
x2 0 0 1 0 1/2 0 6
x1 0 1 0 0 -1/3 1/3 2
cBB-1b
cBB-1A-c
cBB-1
B-1A
B-1
B-1b
What happens when A, b, c changes?
16
The Changes in Coefficients
x2
x2
2x2 24
x1 4
x1 4
Z 4x1 5x2
2x2 12
Z 3x1 5x2 36
2x1 2x2 18
3x1 2x2 18
x1
x1
17
Example of Sensitivity Analysis
  • Calculate changes to the original final tableau
  • from original final tableau
  • use new coefficients

18
Example of Sensitivity Analysis
Basic variable Z x1 x2 s1 s2 s3 r.h.s.
Z 1 0 0 0 ½ 1 48
s1 0 0 0 1 ½ - ½ 7
x2 0 0 1 0 ½ 0 12
x1 0 1 0 0 - ½ ½ -3
  • Feasible?
  • Satisfies optimality criterion?

19
Example of Sensitivity Analysis
  • Simple dual simplex iteration

Basic variable Z x1 x2 s1 s2 s3 r.h.s.
Z 1 0 0 0 ½ 1 48
s1 0 0 0 1 ½ - ½ 7
x2 0 0 1 0 ½ 0 12
x1 0 1 0 0 - ½ ½ -3
Basic variable Z x1 x2 s1 s2 s3 r.h.s.
Z 1
0
0
0
20
Changes in bi only (Case 1)
B.V. Z Original Variables Original Variables Original Variables Original Variables Slack Variables Slack Variables Slack Variables r.h.s.
B.V. Z x1 x2 xn xsn1 xsnm r.h.s.
Z 1 cBB-1A-c cBB-1A-c cBB-1A-c cBB-1A-c cBB-1 cBB-1 cBB-1 cBB-1b
xB 0 B-1A B-1A B-1A B-1A B-1 B-1 B-1 B-1b
  • What is affected when only b changes?
  • Optimality criterion will always be satisfied
  • Feasibility might not

21
Changes in bi onlyExample A
B-1b cBB-1b
Change
to
Basic variable Z x1 x2 s1 s2 s3 r.h.s.
Z 1 0 0 0 3/2 1
s1 0 0 0 1 1/3 -1/3
x2 0 0 1 0 1/2 0
x1 0 1 0 0 -1/3 1/3
22
Changes in bi onlyExample A
  • Simple dual simplex iteration

Basic variable Z x1 x2 s1 s2 s3 r.h.s.
Z 1 0 0 0 3/2 1 54
s1 0 0 0 1 1/3 -1/3 6
x2 0 0 1 0 1/2 0 12
x1 0 1 0 0 -1/3 1/3 -2
Basic variable Z x1 x2 s1 s2 s3 r.h.s.
Z 1
0
0
0
23
Changes in bi onlyRepresenting as differences
Change
to
Can represent as
change in r.h.s. of optimal tableau
Then we can find
change in optimal Z value
24
Changes in bi onlyAllowable ranges
  • Assume only b2 changes
  • The current basis stays feasible (and optimal) as
    long as

25
Changes in coefficients of nonbasic variables
(Case 2a)
B.V. Z Original Variables Original Variables Original Variables Original Variables Slack Variables Slack Variables Slack Variables r.h.s.
B.V. Z x1 x2 xn xsn1 xsnm r.h.s.
Z 1 cBB-1A-c cBB-1A-c cBB-1A-c cBB-1A-c cBB-1 cBB-1 cBB-1 cBB-1b
xB 0 B-1A B-1A B-1A B-1A B-1 B-1 B-1 B-1b
  • What is affected when only c and A columns for a
    nonbasic variable change?
  • Feasibility criterion will always be satisfied
  • Optimality might not

26
Changes in coefficients of nonbasic
variablesExample A continued
  • From Example A (slide 22 p241, Table 6.21), we
    had

Basic variable Z x1 x2 s1 s2 s3 r.h.s.
Z 1 9/2 0 0 0 5/2 45
s1 0 1 0 1 0 0 4
x2 0 3/2 1 0 0 1/2 9
s2 0 -3 0 0 1 -1 6
(cBB-1A - c)1 y A c (B-1A)1
Change
to
27
Changes in coefficients of nonbasic
variablesAllowable ranges
  • Assume only c1 changes
  • The current basis stays optimal (and feasible) as
    long as

28
Introduction of a new variable (Case 2b)
  • Assume the variable was always there, with ci0,
    Aij0
  • Can now assume it is a nonbasic variable at the
    original optimal, and apply the same approach as
    Case 2a

Example A Max Z 3x1 5x2 s. to x1
4 2x2 24 3x1 2x2 18 x1,x2 0
Example A with new variable Max Z 3x1 5x2
2x6 s. to x1 x6 4 2x2
24 3x1 2x2 2x6 18 x1,x2 0
29
Other possible analyses
  • Changes to the coefficients of a basic variable
  • Utilize same approach as initial example, not
    much of a special case
  • Introduction of a new constraint
  • Would optimality criterion be satisfied?
  • Would feasibility criterion be satisfied?
  • Parametric analysis
Write a Comment
User Comments (0)
About PowerShow.com