Reflection - PowerPoint PPT Presentation

About This Presentation
Title:

Reflection

Description:

Reflection & Refraction At Discontinuity (change of Z0): 1-Adjustment to keep the proportionality of V and I 2-in form of initiation of 2 new waves – PowerPoint PPT presentation

Number of Views:77
Avg rating:3.0/5.0
Slides: 39
Provided by: MH87
Learn more at: https://ee.sharif.edu
Category:

less

Transcript and Presenter's Notes

Title: Reflection


1
Reflection Refraction
  • At Discontinuity (change of Z0)
  • 1-Adjustment to keep the
  • proportionality of V and I
  • 2-in form of initiation of 2 new waves
  • The new waves Reflected
  • Transmitted
  • Satisfying portionality continuity
  • The energy conservation Auto. Satisfied
  • a reflection coeff. ß refraction coeff.
  • a(ZB-ZA)/(ZBZA), ß2ZB/(ZBZA)

2
Energy Conservation
  • Assuming ZAgtZB, I1V1/ZA,
    I2-V2/ZA
  • I3V3/ZB,
    V1V2V3, I1I2I3
  • Solving for V2,V3
  • V2ZB-ZA/ZAZB V1
  • V32ZB/ZAZB V1
  • I1V1V1?/ZA
  • V2?/ZA V3?/ZBV1?/ZA(ZA-ZB)/(ZAZB)?4ZAZB
    /(ZAZB)?
  • V1?/ZA

3
Traveling on multiple joint
  • i.e. a line connected to n other lines
  • I3BV3B/ZB, I3CV3C/ZC, . I3NV3N/ZN
  • I2A-V2A/ZA
  • For Continuity of Voltage
  • V1AV2AV3BV3C.V3N
  • I1AI2AI3BI3CI3N
  • These sufficient for Analysis

4
Line Termination
  • Open CCT voltage coeff.s a1, ß2
  • Sh. CCT Voltage coeff.s a-1,ß0
  • A real surge VV0(e-at - e-ßt)
  • For a C termination
  • ZB(s)1/C1s
  • a(1/C1s)-ZA/1/(C1s)ZA,
  • b2/C1s/1/(C1s)ZA
  • v2(s)av1(s)

5
Time response of C termination
  • if a1/(C1ZA)
  • v2(s)V1/s(1/C1s ZA)/(1/C1sZA)
  • V2(t)V1(1-2e-at),V3(t)V1(2-2e-at)
  • Interpretation of V3 response
  • 1- At step application, sh. CCT. O/P zero
  • 2- Finally open CCT. O/P
    2V1
  • Similarly For a termination Inductance L1
  • v2(s)v1/s (L1s-ZA)/(L1sZA)
  • Assuming 1/ßL1/ZA ?
  • v2(s)v11/(sß)-ß/s(sß), v3v12/(sß)

6
Time response of L termination
  • V2(t)-V1(1-2e-ßt)
  • V3(t)2V1e-ßt
  • Application of Thevenin theorem to
  • calculation of refl. refr. at Termination
  • Steps to calculate current in ZB
  • 1- branch 1st removed, V0 across it
  • 2-all sources sh. replaced by int. Imp.s
  • 3-looking to its terminals x,y ZA determined
  • IV0/(ZAZB),VBIZBV0ZB/(ZAZB)

7
Attenuation and Distortion
  • rate of Electrical energy supplied
  • 1/2CV? ? watts, dissipated rate GV??
  • both V?
  • result in an exp. Form voltage wave
    V0exp(-G/C t)
  • current wave supplies
  • 1/2LI?, dissipate I?R
  • both I? ? II0
    exp(-R/L t)
  • However to preserve the relation of V/IZ0
  • requires R/LG/C or R/GL/CZ0?V?/I?
  • says I?RV?G rate. loss. LRrate. loss. Line
    Leak.
  • In power trans. res. lossesgtgt leakance losses

8
Switching Operations and Transmission Lines
  • Source Impedance
  • Voltage on Line
  • V(0)/s x Z0/(LsZ0)
  • VV(0)1-exp(- Z0t/L)
  • complicated source
  • The source impedance shown
  • When study energization of single line

9
Closing Resistor
  • stiff source impress 100 voltage
    on line
  • closing resistor reduce percentage impressed by
    factor Z0/(Z0R)
  • S2 close 1st , S1 short some time later
  • Comparison of reclosing transient voltage

10
Lattice Diagram
  • Example of Line
  • Voltage at instant t,
  • and at point M
  • Add incident reflected up to that instant
  • A general Method
  • voltagecurrent at any location vs time

11
Example(Lattice Diagram Appl.)
  • A sys. of O/H line Cable
  • O/H parameters
  • Zc270O,T100µs
  • Cable parameters
  • Zc30O,T50µs
  • Unit step, Zs0
  • C open CCT
  • VB, IB ?

12
Refl. Refr coefficients
  • aA-1 , ßA0
  • for B junction if O/H 1, cable2
  • aB1-2(30-270)/300-0.8
  • ßB1-2600/3000.2
  • aB2-10.8 ßB2-1540/3001.8
  • aC1 ß2
  • Consider the Lattice Diagram

13
Lattice Diagram of Example
  • T2T
  • t0 eB0
  • tT eB1-.8.2
  • t2T eB1-.8.36.56
  • t3T eB.56.8-.3521
  • t4T eB1-.36.288.51
  • 1.454
  • t5T eB1.454.352.285-.281.8

14
Voltage Variation at B
  • The voltage at B
  • 1-rising continuously
  • 2-increasing to 2 pu
  • 3- since C open
  • What current is expected?
  • Any possible response?

15
Current Refl. Refr. coefficients
  • aA1 ßA0
  • aB120.8 ßB121.8
  • aB21-.8 ßB210.2
  • aC-1 ßc0
  • draw a similar Lattice Diagram

16
Lattice Diagram for Current
  • t0 iB0
  • tT iB(1.8)/Zc1.8/Zc
  • t2T iB1.44/Zc
  • t3T iB2.59/Zc
  • T4T iB1.425/Zc
  • T5T iB1.774/Zc
  • Next the IB curve

17
Variation of IB
  • variation different
  • no similarity
  • there is some similarity in single line
    propagation
  • Method capable of
  • application in a software
  • High memory size

18
Characteristic Method
  • Wave Equations
  • L ?i/dtRi?e/?x0
    (1)
  • C ?e/dtGe?i/?x0
    (2)
  • Difference of a function of 2 variables
  • de?e/?t dt ?e/?x dx
  • di?i/?t dt ?i/?x dx
  • From these if ?e/?x,?i/?t as follows
  • ?e/?xde-?e/?t dt/dx
  • ?i/?tdi-?i/?x dx/dt
  • be substituted in EQ 1
  • L di-?i/?x dx/dt RI de-?e/?t dt/dx0

  • (3)
  • ?e/?t- 1/C ?i/?x G/C e from (2) substituted
    in (3)

19
Reforming the Equations
  • Ldi/dtRide/dxG/C e dt/dx
  • (-Ldx/dt1/C dt/dx) ?i/?x0
    (4)
  • term in ()0 to cancel the partial derivatives
    then
  • 2 resultant ODEs
  • Ldi/dtRide/dx1/C Ge dt/dx0 (5)
  • (dx/dt)?1/LC
  • or in form of
  • LdI dx/dtRidxde1/C Ge dt/dx0
  • dx/dt(-)1/vLC
    (6)

20
Solution based on Characteristic Method
  • if dx/dt1/vLC
  • vL/C di(RIvL/C Ge)dxde0 (7)
  • If dx/dt-1/vLC
  • -vL/C di (Ri-vL/C Ge)dxde0 (8)
  • The characteristics are straight Lines
  • called Forward Backward
  • e i are found from above EQs

21
Finding lossless line solution
  • dx/dt1/vLCv,
  • de-vL/C di-Zc di (9)
  • dx/dt-1/vLC-v
  • devL/C diZc di (10)
  • 1st method employed by Bergeron 1928 in
    Hydraulic
  • Application to single phase transmission line

22
Integration of ODEs 7 8
  • integrating EQ set (7)
  • e-Zcic1 (9), xvtc2
    (10)
  • where c1 c2 are constants
  • found from initial conditions
  • X0 line terminal, if point (d, t) satisfy EQ
    (10)
  • then satisfy EQ(9) and
  • e(d,t)-Zc i(d,t)c1 , dvtc2
    (11)
  • Similarly for point (0,t)
  • e(0,t)-Zc i(0,t)c1, 0vtc2
    (12)
  • Subtracting EQs 11 12 respectively
  • e(d,t)-e(0,t)-Zci(d,t)-i(0,t), dv(t-t)

23
Solution Continued
  • tt-d/vt-t, where td/v
  • e(d,t)-e(0,t-t)-Zc i(d,t)-i(0,t-t)
    (13)
  • and
  • e(0,t)-e(d,t-t)Zci(0,t)-i(d,t-t)
    (14)
  • Rearranging (13)(14)
  • e(d,t)-Zc i(d,t)e(0,t-t)Zc i(0,t-t)
    (15)
  • e(0,t) Zc i(0,t)e(d,t-t)- Zc i(d,t-t)
    (16)
  • Defining, 2 terms in right brackets as History
    dependent voltage sources
  • Ef(0,t-t)-e(0,t-t)Zc i(0,t-t)
  • Eb(d,t-t)-e(d,t-t)-Zc i(d,t-t)

24
Lossless line Equivalent CCTs
  • Substituting in (15)(16)
  • e(d,t)-Zc i(d,t)-Ef(0,t-t)
  • (17)
  • e(0,t)Zc i(0,t)Eb(d,t-t)
  • (18)
  • Equiv. CCT. , ?
  • The Norton Eq. CCT more useful

25
Line Norton Eq. CCT.
  • rewriting (17)(18)
  • i(d,t)-1/Zc e(d,t)-If(0,t-t) (19)
  • i(0,t)1/Zc e(0,t) Ib(d,t-t)(20)
  • If Ib Hist. depend. Cur. Sources
  • If(0,t-t)-1/Zc e(0,t-t)-i(0,t-t)
  • Ib(d,t-t)-1/Zc e(d,t-t)i(d,t-t)
  • Simple H.D.S. evaluation
  • Ef(0,t)-2e(0,t)Eb(d,t-t)
  • Eb(d,t-t)-2e(d,t)-Ef(0,t-t)

26
Eq. CCT. Of Lumped Elements
  • Inductance
  • ea-ebL(dia,b/dt)
  • Trapezoidal Rule
  • ia,b(t)-ia,b(t-?t)
  • 1/L?(ea-eb)dt
  • 1/Lea(t)-eb(t) ea(t-?t)
  • eb(t-?t)/2 . ?t
  • ia,b(t)?t/2L ea(t)-
  • eb(t) Ia,b(t-?t)
  • Ia,b(t-?t)ia,b(t-?t)
  • ?t/2Lea(t-?t)-eb(t-?t)

27
Eq. CCT for Lumped Capacitor
  • Similar derivation
  • ia,b(t)2C/?tea(t)-eb(t)Ia,b(t-?t)
  • Where
  • Ia,b(t-?t)-ia,b(t-?t)-2C/?t
  • ea(t-?t)-eb(t-?t)
  • all in form of
  • algebraic EQs

28
Distributed Line Model in 3ph network
  • for a 3ph lossless line in general
  • -?eph/?xL?iph/?t
  • -?iph/?xC?eph/?t
  • wave EQs similarly for 3ph is
  • ??eph/?x?LC??eph/?t?
  • ??iph/?x?CL??iph/?t?
  • L,C inductance capacitance matrices of
    3 ph line with mutuals

29
Similarity Transformation
  • to solve the complexity of EQs
  • instead of 3ph Domain, Modal Domain solved for 3
    independent voltages
  • Results of Modal Domain Transferred to 3ph
  • ephMeM and iphNiM
  • ??eM/?x?
  • M-?LCM??eM/?t????eM/?t?
  • ??iM/?x?
  • N-?LCN??iM/?t????iM/?t?

30
Similarity Transformation
  • ? is diagonal matrix
  • Diagonal elements are eigen values of
  • LC or CL
  • EQ of ?n is independent of other modes
  • ??eM/?x??n ??eM/?t?
  • ?nLC of single phase
  • A case where
  • MN is shown ?
  • Vnv1/?n,tnl/vn
  • Znvn.?n

1 1 1
1 -2 1
1 1 -2
31
Bergeron EQs for 3ph network
  • Eq. Modal Domains of 3ph.
  • i1a-2a(t)
  • -1/Za e1a(t)-Ifa(t-ta)
  • i1b-2b(t)
  • -1/Zb e1b(t)-Ifb(t-tb)
  • i1c-2c(t)
  • -1/Zc e1c(t)-Ifc(t-tc)

32
The 3ph Eq CCT Equations
  • In matrix form
  • iM(1-2)-??/?-?eM1-IMf(t-t)
  • IMf(t-t)-??/?eM2(t-t)-iM(2-1)(t-t)
  • Then
  • N-?i1-2(t)??/?-?Me1(t)IMf(t-t)
  • Or
  • i1-2(t)Ge1(t) I
  • Where GN??/?-?M-?
  • I-N??/?-?eM2(t-t)iM(1-2)(
    t-t)

33
1st Mid Term Exam
  • Question 1
  • Xc120?/2020O, Xc240O C11/(3.14x20)159.1µF,C2
    79.6µF
  • Vp20v2/v3 CeqC1C2/C1C2
  • Z0v(40x238.68)/126610.868O

34
Q1 continued
  • d?I/dt?1/ts dI/dt I/T?0
  • i(s)(s1/Ts)/s?s/Ts1/T?I(0)I(0)/s?s/Ts1/
    T?
  • I(0)0, I(0)Vc(0)/L
  • i(s)Vc(0)/L x 1/s?s/Ts1/T?
  • i(s)Vc(0)/L x 1/s?1/T? undamped
  • I(t)Vc(0)/Z0 sin?0t
  • IpVp/0.86818.81 KA
  • Ip13.5/18.810.715?fig4.4?2.0
  • ?Z0/R0.868/R2 ? R0.434 O

35
Q1 solution
  • VcfVpx159.1/159.179.610.88KV
  • in undamp, C2swing to 21.76 KV
  • with damping
  • C1V1C1V1(0)-C2V2? V1V1(0)-C2/C1V2
  • V1IRL dI/dt V2, IC2dV2/dt
  • d?V2/dt?L/R dV2/dtV2/LCV1(0)/LC2
  • V2(0)V2(0)0
  • V2(s)V1(0)/T? 1/s(s?s/Ts1/T?)

  • xC1/C1C2
  • 2x15/21.761.38?fig 4.7 ?1.8, RZ0/?
  • RZ0/?0.868/1.80.482O

36
Question 2
  • 30/20v30.866 KA
  • I XL /20/v30.12
  • XL0.12x20/v3/0.8681.6 O
  • L1.6/314.155.1 mH
  • R0.05x20v3/0.8680.666O

37
Q2 continued
  • Zv0.666?1.6?1.73O
  • Ftan-?1.6/0.666tan-?2.467.38?
  • Z0v0.0051/(1.2x10-8)651.92O
  • ?651.92/0.666978.8
  • TRV Almost undamped2Vp2x16.3332.66 KV
  • t?vLC3.1415v0.0051x1.2x10-824.47 µs
  • k20/32.660.6125? fig 4.7?1.2

38
Q2 continued
  • R/651.91.2? R782.3O
  • RRRV32.65/24.571.327 KV/µs
  • t3.6 ? t3.6x 7.8228.15µs
  • RRRV20/28.150.71 KV/µs
Write a Comment
User Comments (0)
About PowerShow.com