Title: Reflection
1Reflection Refraction
- At Discontinuity (change of Z0)
- 1-Adjustment to keep the
- proportionality of V and I
- 2-in form of initiation of 2 new waves
- The new waves Reflected
- Transmitted
- Satisfying portionality continuity
- The energy conservation Auto. Satisfied
- a reflection coeff. ß refraction coeff.
- a(ZB-ZA)/(ZBZA), ß2ZB/(ZBZA)
2Energy Conservation
- Assuming ZAgtZB, I1V1/ZA,
I2-V2/ZA - I3V3/ZB,
V1V2V3, I1I2I3 - Solving for V2,V3
- V2ZB-ZA/ZAZB V1
- V32ZB/ZAZB V1
- I1V1V1?/ZA
- V2?/ZA V3?/ZBV1?/ZA(ZA-ZB)/(ZAZB)?4ZAZB
/(ZAZB)? - V1?/ZA
-
3Traveling on multiple joint
- i.e. a line connected to n other lines
- I3BV3B/ZB, I3CV3C/ZC, . I3NV3N/ZN
- I2A-V2A/ZA
- For Continuity of Voltage
- V1AV2AV3BV3C.V3N
- I1AI2AI3BI3CI3N
- These sufficient for Analysis
4Line Termination
- Open CCT voltage coeff.s a1, ß2
- Sh. CCT Voltage coeff.s a-1,ß0
- A real surge VV0(e-at - e-ßt)
- For a C termination
- ZB(s)1/C1s
- a(1/C1s)-ZA/1/(C1s)ZA,
- b2/C1s/1/(C1s)ZA
- v2(s)av1(s)
5Time response of C termination
- if a1/(C1ZA)
- v2(s)V1/s(1/C1s ZA)/(1/C1sZA)
- V2(t)V1(1-2e-at),V3(t)V1(2-2e-at)
- Interpretation of V3 response
- 1- At step application, sh. CCT. O/P zero
- 2- Finally open CCT. O/P
2V1 - Similarly For a termination Inductance L1
- v2(s)v1/s (L1s-ZA)/(L1sZA)
- Assuming 1/ßL1/ZA ?
- v2(s)v11/(sß)-ß/s(sß), v3v12/(sß)
6Time response of L termination
- V2(t)-V1(1-2e-ßt)
- V3(t)2V1e-ßt
- Application of Thevenin theorem to
- calculation of refl. refr. at Termination
- Steps to calculate current in ZB
- 1- branch 1st removed, V0 across it
- 2-all sources sh. replaced by int. Imp.s
- 3-looking to its terminals x,y ZA determined
- IV0/(ZAZB),VBIZBV0ZB/(ZAZB)
7Attenuation and Distortion
- rate of Electrical energy supplied
- 1/2CV? ? watts, dissipated rate GV??
- both V?
- result in an exp. Form voltage wave
V0exp(-G/C t) - current wave supplies
- 1/2LI?, dissipate I?R
- both I? ? II0
exp(-R/L t) - However to preserve the relation of V/IZ0
- requires R/LG/C or R/GL/CZ0?V?/I?
- says I?RV?G rate. loss. LRrate. loss. Line
Leak. - In power trans. res. lossesgtgt leakance losses
8Switching Operations and Transmission Lines
- Source Impedance
- Voltage on Line
- V(0)/s x Z0/(LsZ0)
- VV(0)1-exp(- Z0t/L)
- complicated source
- The source impedance shown
- When study energization of single line
9Closing Resistor
- stiff source impress 100 voltage
on line - closing resistor reduce percentage impressed by
factor Z0/(Z0R) - S2 close 1st , S1 short some time later
- Comparison of reclosing transient voltage
10Lattice Diagram
- Example of Line
- Voltage at instant t,
- and at point M
- Add incident reflected up to that instant
- A general Method
- voltagecurrent at any location vs time
11Example(Lattice Diagram Appl.)
- A sys. of O/H line Cable
- O/H parameters
- Zc270O,T100µs
- Cable parameters
- Zc30O,T50µs
- Unit step, Zs0
- C open CCT
- VB, IB ?
12Refl. Refr coefficients
- aA-1 , ßA0
- for B junction if O/H 1, cable2
- aB1-2(30-270)/300-0.8
- ßB1-2600/3000.2
- aB2-10.8 ßB2-1540/3001.8
- aC1 ß2
- Consider the Lattice Diagram
13Lattice Diagram of Example
- T2T
- t0 eB0
- tT eB1-.8.2
- t2T eB1-.8.36.56
- t3T eB.56.8-.3521
- t4T eB1-.36.288.51
- 1.454
- t5T eB1.454.352.285-.281.8
14Voltage Variation at B
- The voltage at B
- 1-rising continuously
- 2-increasing to 2 pu
- 3- since C open
- What current is expected?
- Any possible response?
15Current Refl. Refr. coefficients
- aA1 ßA0
- aB120.8 ßB121.8
- aB21-.8 ßB210.2
- aC-1 ßc0
- draw a similar Lattice Diagram
16Lattice Diagram for Current
- t0 iB0
- tT iB(1.8)/Zc1.8/Zc
- t2T iB1.44/Zc
- t3T iB2.59/Zc
- T4T iB1.425/Zc
- T5T iB1.774/Zc
- Next the IB curve
17Variation of IB
- variation different
- no similarity
- there is some similarity in single line
propagation - Method capable of
- application in a software
- High memory size
18Characteristic Method
- Wave Equations
- L ?i/dtRi?e/?x0
(1) - C ?e/dtGe?i/?x0
(2) - Difference of a function of 2 variables
- de?e/?t dt ?e/?x dx
- di?i/?t dt ?i/?x dx
- From these if ?e/?x,?i/?t as follows
- ?e/?xde-?e/?t dt/dx
- ?i/?tdi-?i/?x dx/dt
- be substituted in EQ 1
- L di-?i/?x dx/dt RI de-?e/?t dt/dx0
-
(3) - ?e/?t- 1/C ?i/?x G/C e from (2) substituted
in (3)
19Reforming the Equations
- Ldi/dtRide/dxG/C e dt/dx
- (-Ldx/dt1/C dt/dx) ?i/?x0
(4) - term in ()0 to cancel the partial derivatives
then - 2 resultant ODEs
- Ldi/dtRide/dx1/C Ge dt/dx0 (5)
- (dx/dt)?1/LC
- or in form of
- LdI dx/dtRidxde1/C Ge dt/dx0
- dx/dt(-)1/vLC
(6)
20Solution based on Characteristic Method
- if dx/dt1/vLC
- vL/C di(RIvL/C Ge)dxde0 (7)
- If dx/dt-1/vLC
- -vL/C di (Ri-vL/C Ge)dxde0 (8)
- The characteristics are straight Lines
- called Forward Backward
- e i are found from above EQs
21Finding lossless line solution
- dx/dt1/vLCv,
- de-vL/C di-Zc di (9)
- dx/dt-1/vLC-v
- devL/C diZc di (10)
- 1st method employed by Bergeron 1928 in
Hydraulic - Application to single phase transmission line
22Integration of ODEs 7 8
- integrating EQ set (7)
- e-Zcic1 (9), xvtc2
(10) - where c1 c2 are constants
- found from initial conditions
- X0 line terminal, if point (d, t) satisfy EQ
(10) - then satisfy EQ(9) and
- e(d,t)-Zc i(d,t)c1 , dvtc2
(11) - Similarly for point (0,t)
- e(0,t)-Zc i(0,t)c1, 0vtc2
(12) - Subtracting EQs 11 12 respectively
- e(d,t)-e(0,t)-Zci(d,t)-i(0,t), dv(t-t)
23Solution Continued
- tt-d/vt-t, where td/v
- e(d,t)-e(0,t-t)-Zc i(d,t)-i(0,t-t)
(13) - and
- e(0,t)-e(d,t-t)Zci(0,t)-i(d,t-t)
(14) - Rearranging (13)(14)
- e(d,t)-Zc i(d,t)e(0,t-t)Zc i(0,t-t)
(15) - e(0,t) Zc i(0,t)e(d,t-t)- Zc i(d,t-t)
(16) - Defining, 2 terms in right brackets as History
dependent voltage sources - Ef(0,t-t)-e(0,t-t)Zc i(0,t-t)
- Eb(d,t-t)-e(d,t-t)-Zc i(d,t-t)
24Lossless line Equivalent CCTs
- Substituting in (15)(16)
- e(d,t)-Zc i(d,t)-Ef(0,t-t)
- (17)
- e(0,t)Zc i(0,t)Eb(d,t-t)
- (18)
- Equiv. CCT. , ?
- The Norton Eq. CCT more useful
25Line Norton Eq. CCT.
- rewriting (17)(18)
- i(d,t)-1/Zc e(d,t)-If(0,t-t) (19)
- i(0,t)1/Zc e(0,t) Ib(d,t-t)(20)
- If Ib Hist. depend. Cur. Sources
- If(0,t-t)-1/Zc e(0,t-t)-i(0,t-t)
- Ib(d,t-t)-1/Zc e(d,t-t)i(d,t-t)
- Simple H.D.S. evaluation
- Ef(0,t)-2e(0,t)Eb(d,t-t)
- Eb(d,t-t)-2e(d,t)-Ef(0,t-t)
26Eq. CCT. Of Lumped Elements
- Inductance
- ea-ebL(dia,b/dt)
- Trapezoidal Rule
- ia,b(t)-ia,b(t-?t)
- 1/L?(ea-eb)dt
- 1/Lea(t)-eb(t) ea(t-?t)
- eb(t-?t)/2 . ?t
- ia,b(t)?t/2L ea(t)-
- eb(t) Ia,b(t-?t)
- Ia,b(t-?t)ia,b(t-?t)
- ?t/2Lea(t-?t)-eb(t-?t)
27Eq. CCT for Lumped Capacitor
- Similar derivation
- ia,b(t)2C/?tea(t)-eb(t)Ia,b(t-?t)
- Where
- Ia,b(t-?t)-ia,b(t-?t)-2C/?t
- ea(t-?t)-eb(t-?t)
- all in form of
- algebraic EQs
28Distributed Line Model in 3ph network
- for a 3ph lossless line in general
- -?eph/?xL?iph/?t
- -?iph/?xC?eph/?t
- wave EQs similarly for 3ph is
- ??eph/?x?LC??eph/?t?
- ??iph/?x?CL??iph/?t?
- L,C inductance capacitance matrices of
3 ph line with mutuals
29Similarity Transformation
- to solve the complexity of EQs
- instead of 3ph Domain, Modal Domain solved for 3
independent voltages - Results of Modal Domain Transferred to 3ph
- ephMeM and iphNiM
- ??eM/?x?
- M-?LCM??eM/?t????eM/?t?
- ??iM/?x?
- N-?LCN??iM/?t????iM/?t?
30Similarity Transformation
- ? is diagonal matrix
- Diagonal elements are eigen values of
- LC or CL
- EQ of ?n is independent of other modes
- ??eM/?x??n ??eM/?t?
- ?nLC of single phase
- A case where
- MN is shown ?
- Vnv1/?n,tnl/vn
- Znvn.?n
1 1 1
1 -2 1
1 1 -2
31Bergeron EQs for 3ph network
- Eq. Modal Domains of 3ph.
- i1a-2a(t)
- -1/Za e1a(t)-Ifa(t-ta)
- i1b-2b(t)
- -1/Zb e1b(t)-Ifb(t-tb)
- i1c-2c(t)
- -1/Zc e1c(t)-Ifc(t-tc)
32The 3ph Eq CCT Equations
- In matrix form
- iM(1-2)-??/?-?eM1-IMf(t-t)
- IMf(t-t)-??/?eM2(t-t)-iM(2-1)(t-t)
- Then
- N-?i1-2(t)??/?-?Me1(t)IMf(t-t)
- Or
- i1-2(t)Ge1(t) I
- Where GN??/?-?M-?
- I-N??/?-?eM2(t-t)iM(1-2)(
t-t)
331st Mid Term Exam
- Question 1
- Xc120?/2020O, Xc240O C11/(3.14x20)159.1µF,C2
79.6µF - Vp20v2/v3 CeqC1C2/C1C2
- Z0v(40x238.68)/126610.868O
34Q1 continued
- d?I/dt?1/ts dI/dt I/T?0
- i(s)(s1/Ts)/s?s/Ts1/T?I(0)I(0)/s?s/Ts1/
T? - I(0)0, I(0)Vc(0)/L
- i(s)Vc(0)/L x 1/s?s/Ts1/T?
- i(s)Vc(0)/L x 1/s?1/T? undamped
- I(t)Vc(0)/Z0 sin?0t
- IpVp/0.86818.81 KA
- Ip13.5/18.810.715?fig4.4?2.0
- ?Z0/R0.868/R2 ? R0.434 O
35Q1 solution
- VcfVpx159.1/159.179.610.88KV
- in undamp, C2swing to 21.76 KV
- with damping
- C1V1C1V1(0)-C2V2? V1V1(0)-C2/C1V2
- V1IRL dI/dt V2, IC2dV2/dt
- d?V2/dt?L/R dV2/dtV2/LCV1(0)/LC2
- V2(0)V2(0)0
- V2(s)V1(0)/T? 1/s(s?s/Ts1/T?)
-
xC1/C1C2 - 2x15/21.761.38?fig 4.7 ?1.8, RZ0/?
- RZ0/?0.868/1.80.482O
36Question 2
- 30/20v30.866 KA
- I XL /20/v30.12
- XL0.12x20/v3/0.8681.6 O
- L1.6/314.155.1 mH
- R0.05x20v3/0.8680.666O
37Q2 continued
- Zv0.666?1.6?1.73O
- Ftan-?1.6/0.666tan-?2.467.38?
- Z0v0.0051/(1.2x10-8)651.92O
- ?651.92/0.666978.8
- TRV Almost undamped2Vp2x16.3332.66 KV
- t?vLC3.1415v0.0051x1.2x10-824.47 µs
- k20/32.660.6125? fig 4.7?1.2
38Q2 continued
- R/651.91.2? R782.3O
- RRRV32.65/24.571.327 KV/µs
- t3.6 ? t3.6x 7.8228.15µs
- RRRV20/28.150.71 KV/µs