Title: The%20Magnetoelastic%20Paradox
1The Magnetoelastic Paradox
- M. Rotter, A. Barcza, IPC, Universität Wien,
Austria - H. Michor, TU-Wien, Austria
- A. Lindbaum, FH-Linz, Austria
- M. Doerr, M. Loewenhaupt, IFP TU-Dresden, Germany
- M. Zschintzsch, ISP TU-Dresden, Germany
- B. Beuneu, LLB Saclay, France
- M el Massalami, UFRJ, Brazil
- J. Prokleska, Charles University, Prague, CZ
- A. Kreyssig, IOWA State University, Ames, US
Martin Rotter,MSL2009
2STANDARD MODEL OF RARE EARTH MAGNETISM
Crystal Field Effect
NO Crystal Field Effect
Sm,Er, Tm,Yb ?gt0
Ce,Pr,Nd, Tb,Dy,Ho ?lt0
Gd3,Eu2 ?0
e-
e-
L0
L?0
Spherical 4f-Charge Density
Distortion of 4f Charge Density
Martin Rotter,MSL2009
3STANDARD MODEL OF RARE EARTH MAGNETISM
microscopic origin of magnetostriction
strain dependence of magnetic interactions
1) Single ion effects 2) Two ion
effects ? Crystal Field Striction ?
Exchange Striction
spontaneous magnetostriction
forced magnetostriction
a
kT lt?cf
M. Doerr, M. Rotter, A. Lindbaum,
Magnetostriction in Rare Earth based
Antiferromagnets Adv. Phys. 54 (2005) 1-66
Martin Rotter,MSL2009
4Exchange striction on a Square Lattice
Elastic Energy
Minimize Free Energy
Magnetic Energy
Ferromagnet J1gt0 dV/Vgt0
No distortion (dJ1/de)
Martin Rotter,MSL2009
5Anti-Ferromagnet with NN exchange J1lt0 dV/Vlt0
No distortion (dJ1/de)
Martin Rotter,MSL2009
6How to detect a symmetry breaking distortion ?
THE MAGNETOELASTIC PARADOX M. Rotter et al.
Europhys. lett. 75 (2006) 160-166 Antiferromagnets
with L0 below TN Symmetry breaking
distortions are expected but have NOT been found
Intensity
2theta
.... ALL Experiments symmetry breaking
distortion ? lt10-4
7How to measure Magnetostriction ?
Experimental Methods
Capacitance Dilatometry
X-ray Powder Diffraction
- Anisotropic Effects on
- Polycrystals (Expansion,
- Symmetry-Changes)
- bad resolution (10-4 in dl/l)
- Good resolution (10-9 in dl/l)
- 45 T Magnetic Fields - forced magnetostriction
- requires single crystals
- Rotter et.al. Rev. Sci. Instr. 69 (1998) 2742
- Patent by M Rotter 2006
- Optional use in PPMS, VTIs,...
- Operated at 14 institutes in A, CH, D, CZ,
Brazil, US,UK
Martin Rotter,MSL2009
8GdNi2B2C
TN 20 K M010 ltTR 14 K M0yz q
(0.55 0 0)
small magnetostriction, therefore
cap.-dilatometry ....
Martin Rotter,MSL2009
9GdNi2B2C
Da/a
TN 20 K M010 ltTR 14 K M0yz q
(0.55 0 0)
10-4
Martin Rotter,MSL2009
10The Magnetoelastic Paradox ....
demonstrated at GdNi2B2CRotter et al. EPL 75
(2006) 160
Orthorhombic Distortion
?
Exchange Striction Model
Capacitance Dilatometry
Standard Model of RE Mag ... McPhase Simulation
Martin Rotter,MSL2009
11Double Q structure
Orthorhombic Distortion
b
T
2 K
Exchange Striction Model
Exchange Striction Model
b
e
-
a
e
a
Capacitance Dilatometry
- Dipolar easy plane anisotropy
- Landau Expansion M4 term stabilizes double q
structure ! - The Magnetoelastic Paradox explained !?
- J. JensenM. Rotter PRB 77 (2008) 134408
- What if dipolar anisotropy favors moments along
c ?
m
H
a
(kOe)
0
Standard Model of RE Mag ... McPhase Simulation
Up to now (despite some attempts) no experimental
verification of double q order work in progress !
Martin Rotter,MSL2009
12Status of Research on Magnetostriction in Gd
based Antiferromagnets. Systems with a symmetry
breaking magnetic propagation vector and large
spontaneous magnetostriction demonstrate the
existence of the magnetoelastic paradox and are
marked by "MEP". Symmetry Magnetic
Anisotropic/ Single Forced /
Propagation isotropic(dV/V) Crystal
Magneto- Neel Spontaneous available
-striction Temp.(K) Magnetostriction
(10-3) GdIn3 cub./43 12 (1/2 1/2 0) 13 MEP!
0.0/-0.3 14 yes GdCu2In cub./10 (1/3 1 0)
R18 0.0/-0.1 15 GdPd2In cub./10 16
0.0/0.0 15 GdAs cub./25 (3/2 3/2 3/2) 17,
18, 19 17no MEP ? GdP cub./15 (3/2 3/2 3/2)
17 17 GdSb cub./28 (3/2 3/2 3/2) 20 ?
21, 22no MEP? Yes work in
progress GdSe cub./60 (3/2 3/2 3/2) 20 GdBi
cub./32 (3/2 3/2 3/2) 20 21no MEP ? GdS
cub./50 (3/2 3/2 3/2) 20 EuTe cub./9.8 (3/2
3/2 3/2) 23 23 GdTe cub./80 (3/2 3/2 3/2)
20 GdAg cub./133 (1/2 1/2 0) 24 GdBe13
cub./27 (0 0 1/3) 25 Gd2Ti2O7 cub./1 (1/2
1/2 1/2) 26 yes GdB6 cub./16 (1/4 1/4 1/2)
27 yes Gd2CuGe3 hex./12 28 GdGa2
hex./23.7 (0.39 0.39 0) 29 GdCu5 hex./26
(1/3 1/3 0.22) 29 Gd5Ge3 hex./79 30 (0.35
0 0) work in progress yes work in
progress Gd7Rh3 hex./140 31, 32 Gd2PdSi3
hex./21 33 work in progress yes GdCuSn
hex./24 (0 1/2 0) 34 MEP! 1.9/-0.5
35 GdAuSn hex./35 34 (0 1/2 0) 36 GdAuGe
hex./16.9 37 GdAgGe hex./14.8 38 GdAuIn
hex./12.2 38 GdAuMg hex./81 39 GdAuCd
hex./66.5 40 (1/2 0 1/2) 40 GdAg2 tetr./23
(1/4 2/3 0) R12 MEP! 1.2/0.0 R19 Gd2Ni2-xIn
tetr./20 R19 0.8/0.0 R19
13 Symmetry Magnetic Anisotropic/ Single
Forced / Propagation isotropic(dV/V)
Crystal Magneto- Neel Spontaneous
available -striction Temp.(K)
Magnetostriction (10-3) Gd2Ni2Cd tetr./65
41 Gd2Ni2Mg tetr./49 42 Gd2Pd2In tetr./21
43 GdNi2B2C tetr./20 (0.55 0 0) 44 MEP!
0.1/0.0 R19, R20 yes R4 GdAu2 tetr./50
(5/6 1/2 1/2) R12 0.0/0.0 R19 GdB4
tetr./42 (1 0 0) 45 GdRu2Si2 tetr./47 46
(0.22 0 0) MEP! -0.6/-0.8 yes in
progress GdRu2Ge2 tetr./33 46 work in
progress work in progress GdNi2Si2 tetr./14.5
(0.21 0 0.9) 47 GdNi2Sn2 tetr./7
48 GdPt2Ge2 tetr./7 48 GdCo2Si2 tetr./45
48 GdAu2Si2 tetr./12 (1/2 0 1/2)
R12 GdPd2Ge2 tetr./18 48 GdPd2Si2
tetr./16.5 49 GdIr2Si2 tetr./82.4
49 GdPt2Si2 tetr./9.3 49 (1/3 1/3 1/2)
50 GdOs2Si2 tetr./28.5 49 GdAg2Si2 tetr./10
48 GdFe2Ge2 tetr./9.3 51, 52 GdCu2Ge2
tetr./15 51 GdRh2Ge2 tetr./95.4 51 GdRh2Si2
tetr./106 49 GdCu2Si2 tetr./12.5 (1/2 0 1/2)
47 GdPt3Si tetr./7.5 53 work in
progress GdCu(FeB) orth./45 (0 1/4 1/4) 54
19/-2 54 Gd3Rh orth./112 55 MEP ? 6.4/2.1
56 Gd3Ni orth./100 57 MEP ? 4.5/2.9
56 Gd3Co orth./130 58, 59 GdSi2
orth.(lt818K)/? 60 GdSi orth./55 61 work in
progress work in progress yes work in
progress GdCu6 orth./16 62 work in
progress GdAlO3 orth./3.9 63 GdBa2Cu3O7
orth./2.2 (1/2 1/2 1/2) 64 65 GdPd2Si
orth./13 66
14Summary on the MEP
- prevalence of double-q structures might explain
the magnetoelastic Paradox experimental
verification by scattering techniques ? - GdNi2B2C large distortion at small fields - is
this common to other high spin value AFM ? ...
implication on magnetostrictive technology ? - Magnetoelastic Coupling long wave length limit
of electron phonon interaction ... relevance for
superconductivity ?
Martin Rotter,MSL2009