Title: Who remembers which angles and sides are congruent if
1Who remembers which angles and sides are
congruent if
2Name the three angles and sides are congruent if
3What information about the triangles is shown in
the drawings?
4C
B
A
D
1
5F
G
E
H
I
2
6J
L
M
I
K
N
3
7P
O
S
Q
T
R
4
8Section 4.3 Ways to justify congruent triangles.
http//nlvm.usu.edu/en/nav/frames_asid_165_g_1_t_3
.html
9Identify the Following Congruencies as
10C
B
A
D
1
11F
G
E
H
I
2
12J
L
M
I
K
N
3
13P
O
S
Q
T
R
4
145
156
167
178
189
1910
2011
2112
2213
2314
2415
2516
2617
2718
2819
2920
3021
3122
3223
3324
3425
3526
3627
3728
3829
3930
40- Worksheet answers
- SSS 2. AAS 3. None
- SAS 5. AAS 6. SAS 7. SAS
- None 9. ASA 10. SSS 11. AAS or HL
- 12. ASA 13. HL 14. None 15. SAS or ASA
- None 17. None 18. AAS 19. None
- ASA 21. HL 22. HL 23. None
- ASA 25. AAS 26. ASA 27. AAS or HL
- 28. HL 29. ASA 30. HL
41- Page 170-171 1 18, Section 5.5
- ASA 2. SSS 3. SAS
- None 5. SSS or SAS 6. None
- SSS 8. SAS 9. SAS
- SSS or SAS or HL 11. None 12. ASA
- ASA 14. SAS 15. SAS
- 16. ASA 17. None 18. None
- Page 185-86 1-11, Section 5.8
- SAS 2. AAS 3. AAS 4. SAS
- SSS 6. HL 7. HL 8. None
- 9. ASA 10. HL 11. AAS
42Two mathematicians, Mr. Gauss and Mr. Newton, are
walking down the street. Here is a portion of
their conversation. N How many children do you
have? G Three N How old are they? G The
product of their ages is 36. N That doesnt tell
me how old they are. G The sum of their ages is
the same as the house number on that house you
see across the street. N It is still
impossible for me to tell their ages. G The
eldest is visiting her grandmother. N Ah, now I
know how old they are. How old are Gauss three
children?
43Section 5.6 Proving triangles are
congruent. What are the five ways we can tell if
triangles are congruent? http//regentsprep.org/
Regents/mathb/1b/Reccontri.htm
44Proof A B
45http//www.chatham.edu/PTI/ProofinMathematics/proo
f_curriculum.htm A man is camped at the foot of
a mountain, at dawn he breaks camp and begins
hiking up the mountain. He reaches the peak of
the mountain at sunset and camps out for the
night at the summit. At sunrise on the next day
he breaks camp and begins hiking down the
mountain using the same path he took on the way
up. He reaches his original camp at sunset. Is
there necessarily a point on the path at which
the man arrives at the same time of day on both
days? Why or why not? http//www.emunix.emich.edu
/kkustron/306/logic.ppt
46- Practice 29 Answers
- SAS 2. ASA 3. SAS or ASA
- ASA 5. SSS 6. None
- SAS 8. None 9. SSS
- None 11. SSS 12. ASA
- 13. ASA 14. None 15. SAS
- Practice 32 Answers
- ASA 2. AAS 3. None
- HL 5. AAS 6. None
- 7.ASA 8. HL 9. SSS
- AAS 11. HL 12. AAS
- 13. AAS 14. None 15. HL
47- Worksheet answers
- SSS 2. AAS 3. None
- SAS 5. AAS 6. SAS 7. SAS
- None 9. ASA 10. SSS 11. AAS or HL
- 12. ASA 13. HL 14. None 15. SAS or ASA
- None 17. None 18. AAS 19. None
- ASA 21. HL 22. HL 23. None
- ASA 25. AAS 26. ASA 27. AAS or HL
- 28. HL 29. ASA 30. HL
48- Agenda.
- What are the five ways to verify congruent
triangles? - If ?MAX? ?WIL, what do you know?
- Hand back short quiz from Friday.
- Practice 30
- Practice 31
- HW
49Practice 30 1
50Practice 30 2
51Practice 30 3
52Practice 30 4
53Practice 30 5
54Practice 30 6
55Practice 30 7
56Practice 30 8
57- Agenda
- Put problems from practice 31 on the board.
- Quiz Wednesday on proving congruent triangles and
- CPCTC
58Practice 31
59(No Transcript)
60(No Transcript)
61(No Transcript)
62(No Transcript)
63(No Transcript)
64(No Transcript)
65(No Transcript)
66(No Transcript)
67(No Transcript)
68(No Transcript)
69(No Transcript)
70(No Transcript)
71(No Transcript)
72(No Transcript)
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109(No Transcript)