DETERMINING PRIMITIVE ROOTS - PowerPoint PPT Presentation

1 / 53
About This Presentation
Title:

DETERMINING PRIMITIVE ROOTS

Description:

ARITHMETIC MODULO P0. The reduction process is used to define the . arithmetic modulo P. For remainders a, b between 0 and P-1, the operations – PowerPoint PPT presentation

Number of Views:454
Avg rating:3.0/5.0
Slides: 54
Provided by: nist152
Learn more at: https://math.nist.gov
Category:

less

Transcript and Presenter's Notes

Title: DETERMINING PRIMITIVE ROOTS


1
DETERMININGPRIMITIVE ROOTS
  • by
  • Christoph and John C. Witzgall
  • September 15, 2015

2
Divisors/Multipliers
  • Integers will be capitalized. For A, B gt 0,
  • gcd(A, B) greatest common divisor
  • WA and WB gt Wgcd (A, B)
  • lcm(A, B) least common multiple
  • AW and BW gt lcm(A, B)W
  • (1)
  • A, B are relatively prime ltgt gcd(A, B)1

gcd(A, B) lcm(A, B)
AB
3
REDUCTION MODULO Pgt0
  • For P gt 0 , any integer X may be represented
    as
  • X SP r, 0 r lt P,
  • with r the
  • remainder of X modulo P
  • and S the value of integer (long) division of
  • X by P. We say that X is reduced to r
    modulo P.

4
ARITHMETIC MODULO Pgt0
  • The reduction process is used to define the
  • arithmetic modulo P.
  • For remainders a, b between 0 and P-1, the
    operations
  • a b, a - b, ab
  • are evaluated using their integer face value, if
    necessary, reducing the results modulo P.

5
THE GROUP GP
  • For P a prime, the remainders,
  • 1, 2, 3, , P1
  • under multiplication modulo P form the group,
  • GP
  • our subject of interest.

6
CYCLES MODULO 7
  • 1

7
CYCLES MODULO 7
  • 1 2

8
CYCLES MODULO 7
  • 1 2 4

9
CYCLES MODULO 7
  • 1 2 4 8
  • -7

10
CYCLES MODULO 7
  • 1 2 4 1

11
CYCLES MODULO 7
  • 1 2 4 1 2

12
CYCLES MODULO 7
  • 1 2 4 1 2 4

13
CYCLES MODULO 7
  • 1 2 4 1 2 4 8
  • -7

14
CYCLES MODULO 7
  • 1 2 4 1 2 4 1 . . .

15
CYCLES MODULO 7
  • (1 2 4)
  • 1

16
CYCLES MODULO 7
  • (1 2 4)
  • 1 3

17
CYCLES MODULO 7
  • (1 2 4)
  • 1 3 9
  • -7

18
CYCLES MODULO 7
  • (1 2 4)
  • 1 3 2

19
CYCLES MODULO 7
  • (1 2 4)
  • 1 3 2 6

20
CYCLES MODULO 7
  • (1 2 4)
  • 1 3 2 6 18
  • -14

21
CYCLES MODULO 7
  • (1 2 4)
  • 1 3 2 6 4

22
CYCLES MODULO 7
  • (1 2 4)
  • 1 3 2 6 4 12
  • -7

23
CYCLES MODULO 7
  • (1 2 4)
  • 1 3 2 6 4 5

24
CYCLES MODULO 7
  • (1 2 4)
  • 1 3 2 6 4 5 15
  • -14

25
CYCLES MODULO 7
  • (1 2 4)
  • 1 3 2 6 4 5 1

26
CYCLES MODULO 7
  • C(2) (1 2 4)
  • C(3) (1 3 2 6 5) 3 primitive root
  • C(4) (1 4 2)
  • C(5) (1 5 6 2 3) 5 primitive root
  • C(6) (1 6)

27
GROUPS
  • Groups considered here are finite and abelian.
    The notation
  • G order of G
  • Means number of elements. Fundamentally,
  • N G gt aN 1 for a ? G
  • H ? G gt H divides G

28
CYCLES
  • The cycle
  • C(a) (1, a, a2, , aN-1), aN 1,
  • encapsulates the period of a sequence of consecu-
  • tive powers of an element a ? G.
  • (3) N C(a), aR 1 gt NR
  • The entries in C(a) form a group. Such groups,
    generated by a single element are called
    cyclic.

29
SUBCYCLES
  • Suppose N C(a), KN, M N/K. Then
  • C(aK ) (1 aK a2K )
  • is a subcycle of C(a). Its length is given by
  • (4) Proposition C(aK ) N/K M
  • Proof aKM aN 1. If aKJ 1 for 0 lt J M
  • then NKJ. Thus MJ, so that J M.

30
SPREADS
  • Subgroups H1, H2 ? G together
  • generate what we call their
  • spread H1 ? H2
  • Spread
  • H1 H2
  • Inter section

31
ORDERS OF SPREADS
  •  

32
COROLLARY
  •  

33
PRIMITIVE ROOTS
  • (6) Primitive Root Theorem Gp is cyclic
  • This means that Gp may be generated by
  • a single one of its elements. Each such
    generator is a primitive root of P. We propose
  • A constructive proof based on prime factorization
    of P-1
  • An algorithm for computing primitive roots.

34
APPROACH
  • In what follows, we aim to prove the
  • (7) Theorem The spread of two cycles
  • C(a) and C(b) in GP is cyclic

by characterizing a generator x ? GP
__ C(a)
? C(b) C(x) Successively collapsing pairs
of cycles into single ones then yields a
primitive root.
35
RELATIVELY PRIME CYCLES
  • We call cycles C(a), C(b) in group G
    relatively prime if C(a), C(b) are
    relatively prime.
  • (8) Theorem The spread of relatively prime
    cycles C(a) and C(b) is cyclic
  • C(a) ? C(b) C(ab).
  • (Proof after the next slide.)

36
CONVENTION
  • For what follows in this presentation,
    we are using the notation
  • A C(a) , B C(b)
  • for the orders of cycles C(a) and C(b).

37
PROOF OF THEOREM (8)
  • By (5) and (1), C(a) ? C(b) A B lcm (A,
    B).
  • For M gt 0
  • (ab)M 1 ltgt aM (bM ) -1 ? C(a) n C(b)
  • ltgt aM b M 1 ltgt AM and BM by
    (3)
  • In other words, the exponent
  • M lcm(A, B) AB
  • is the smallest positive exponent with (ab)M
    1.
  • Thus C(a) ? C(b) C (ab).

38
CYCLES MODULO 11
  • C(2) (1 2 4 8 5 10 9 7 3 6)
  • C(3) (1 3 9 5 4)
  • C(4) (1 4 5 9 3)
  • C(5) (1 5 3 4 9)
  • C(6) (1 6 3 7 9 10 5 8 4 2)
  • C(7) (1 7 5 2 3 10 4 6 9 8)
  • C(8) (1 8 9 6 4 10 3 2 5 7)
  • C(9) (1 9 4 3 5)
  • C(10) ( 1 10)
  • Cycles of equal lengths have the same elements.

39
LAGRANGE
  •  

40
CONSEQUENCES
  • Recall
  • A C(a), B C(b).
  • In GP the statements
  • i. AB ltgt C(a) ? C(b)
  • (10) ii. C(a) n C(b) gcd(A, B)
  • iii. C(a) ? C(b) lcm(A,
    B)
  • are consequences of Lagrange (9).


41
SEPARATION
  • We call UA and VB separators of A and
    B if
  • (11) ( i) lcm(A/U, B/V) lcm(A, B)
  • ( ii) gcd(A/U, B/V) 1
  • Theorem If U and V separate A and B,
  • C(a) ? C(b) C(aU bV).



42
Proof of Theorem 12
  • Proof By (4),
  • C(aU )A/U, C(bV)B/V. Thus by (10)
  • C(a) ? C(b) lcm(A,B)
  • C(aU ) ? C(bV) lcm(A/U, B/V)
  • Yielding by (11.i), C(a) ? C(b) C(aU ) ?
    C(bV).
  • As C(aU) ? C(a), C(bV) ? C(b), we have
  • C(a) ? C(b) C(aU ) ? C(bV )
  • By (11.i), C(a) and C(b) are relatively prime. By
    (8)
  • C(aU ) ? C(bV) C(aU bV ).

43
SEPARATOR PRODUCT
  •  

44
FACTORIZATION
  • A 120 B 1260
  • The prime factors involved in both are
  • 2, 3, 5, 7
  • Prime factorizations of A and B
  • A 120 8 3 5 1
  • B 1260 4 9 5 7
  • lcm(A, B) 8 9 5 7
  • gcd(A, B) 4 3
    5 1

45
THE GIST
  • A 120 8 3 5 1 8 1 5
    1 40 A/U
  • B1260 4 9 5 7 1 9 1
    7 63 B/V
  • U 3 1 3, V 4 5 20
  • Reducing the factors of lower multiplicity to 0
  • leaves lcm(A, B) unchanged, while reducing
  • A by U and B by V, effecting separation.

46
Stepwise Separation
  •  


47
CUMULATIVE MULTIPLICATION
  •  


48
PARTIAL SEPARATOR
  • (15) Theorem With C gcd(A, B),
  • W gcd(A/C, C) gt 1
  • is a partial separator of A, B.
  • Proof In view of (14), it suffices to show that
    any prime
  • divisor QW is a partial separator of A, B. The
    multiplicity, mult(QA), of Q in A exceeds
    mult(QC). Then
  • gcd(Q, B/C) gcd(A/C, B/C) 1,
  • Implies gcd(Q, B/C) 1 so that
  • mult(QB) mult(QC) lt mult (QA).
  • Thus gcd(A, B/Q) gcd(A, B)/Q.

49
TERMINATION
  •  


50
EXAMPLE
  • We revisit the
  • A 120, B 1260
  • C gcd(A, B) 60, A/C 2
  • W gcd(A/C, C) gcd(2,60) 2
  • A 120, B (B/2) 630
  • C gcd(A, B) 30, A/C 4
  • W gcd(A/C, C) gcd(4,30) 2
  • A 120, B (B/2) 315
  • C gcd(A, B) 15, A/C 8
  • W gcd(A/C, C) gcd(8, 315) 1
  • 4. U C 15, V 2 2 4

51
SEPARATION ALGORITHM
  • Given integer A, B gt 0 Wanted separators
    U,V.
  • Step 1 1 ? V, gcd(A, B) ? C
  • Step 2 If C 1 ? step 7
  • Step 3 A/C ? X
  • Step 4 gcd (X, C) ? W
  • Step 5 If W 1 ? step 7
  • Step 6 VW ? V, C/W ? C, XW ? X, ? step 4
  • Step 7 C ? U, ? terminate

52
NUMBERS
  • 1228 primes 10,000
  • primitive roots calculated
  • 24 separation required
  • 470 instances of primitive root 2

53
Copies of this Power Point are available at the
following link http//math.nist.gov/mcsd/Seminars
/2015/2015-09-15-Witzgall.html
THANK YOU FOR COMING!
Write a Comment
User Comments (0)
About PowerShow.com