Title: Point-to-Point Real-Time Communication Over a Backplane Bus
1Introduction to estimation theory
Seoul Natl Univ.
2Contents
- What is estimator for signal models
- estimator application
- Signal models
- Design objectives
- Options of estimators
- Objectives and design procedure
- Options for estimator smoothing, filtering, and
predicting - FIR structure
- Initial state dependency
- Performance criterion
- Extension to Control
Seoul Natl Univ.
31.Introduction
1.1 What is estimator for signal models (1/1)
Parameter estimation
Parameter
estimator
State
State estimation
as small as possible
Seoul Natl Univ.
41.Introduction
1.2 estimator application (1/3)
- Other methodology
- Fault detection
- parameter estimation
- state observer/estimation
- signal separation
- spectrum analysis
- Output feedback control state feedback control
estimator
Seoul Natl Univ.
51.Introduction
1.2 estimator application (2/3)
Output feedback control state feedback control
estimator
plant
Control
Seoul Natl Univ.
61.Introduction
1.2 estimator application ( 3/3)
- Practical areas
- Speech- speech enhancement
- Image- medical imaging- denoising
- aerospace - target tracking- navigation-
flight pass reconstruction - chemical process- distillation columns
- mechanical system - motor system
- biological area- cardiac arrhythmia detection
Seoul Natl Univ.
71.Introduction
1.3 Signal models (1/3)
- Categories of signal models
Time invariant
Discrete-time
State space
Stochastic
Modeled
Linear
Nonlinear
Unmodeled
Time varying
Deterministic
Generic linear model
Continuous-time
Seoul Natl Univ.
81.Introduction
1.3 Signal models (2/3)
- In case of stochastic model
are random process
and
- In case of deterministic model
are deterministic signal
and
- Choice of model is important for model-based
signal processing
Seoul Natl Univ.
91.Introduction
1.3 Signal models (3/3)
- Modelled vs unmodelled signal
Seoul Natl Univ.
101.Introduction
1.4 Design objectives (1/1)
- Stability of the filter
- Estimation error ( often called performance
) unbiasedness convergence
efficiency - Robustness estimation error w.r.t signal model
uncertainties - Computation load
Seoul Natl Univ.
111.Introduction
1.5 Options for estimators (1/1)
Performance Criterion
generic linear
minimax
Signal Models
infinite horizon
Minimum variance
stochastic
state space
least square
deterministic
receding horizon
IIR (infinite horizon)
FIR (receding horizon)
Given
Options
Initial state dependent
Initial state independent
Estimator structure
Nonlinear
Linear
Smoothing
Prediction
Filter
Seoul Natl Univ.
121.Introduction
1.6 Objectives and design procedure (1/2)
Yes
No
Signal models
Optimal estimator
desired properties
Seoul Natl Univ.
131.Introduction
1.6 Objectives and design procedure (2/2)
Objectives
Options
Stability
Small error
- Robustness
- w.r.t uncertainties
- w.r.t disturbance
141.Introduction
1.7 Options for estimator smoothing,
filtering, and predicting
Current time
Smoothing
Filtering
Predicting
Seoul Natl Univ.
151.Introduction
1.8 FIR structure (1/ 9)
Which one do you think better ?
Seoul Natl Univ.
161.Introduction
1.8 FIR structure (2/9)
- BIBO stability of FIR estimators
Case 1 (FIR)
Case 1 (IIR)
Seoul Natl Univ.
171.Introduction
1.8 FIR structure (3/9)
- Robustness to model uncertainty
Divergence of IIR filter (Kalman filter)
Seoul Natl Univ.
181.Introduction
1.8 FIR structure (4/9)
- Robustness to round off error comparison of
error covariance
- Simulation environments
- We assume that the filter gain is previously
known by off-line calculation - Rounding off error is applied when updated
- Model
- Observation
- Though rounding at the 4th digit are not serious,
rounding of 3rd and 2 nd digit makes difference
between the FIR filter and IIR filter.
Seoul Natl Univ.
191.Introduction
1.8 FIR structure (5/9)
- Require to be deadbeat using nominal systems
- Nominal systems zero disturbance / noise system
In case of Control
- Stabilization the nominal system
- Stabilization the disturbed systems
Seoul Natl Univ.
201.Introduction
1.8 FIR structure (6/9)
Noise
State estim. trajectory
Exact filter (deadbeat phenomenon)
Seoul Natl Univ.
211.Introduction
1.8 FIR structure (7/9)
IIR filter
FIR filter
Original
Time
Filtered
Magnitude
Heavy distortion of phase at band gap
Frequency
Phase
Seoul Natl Univ.
221.Introduction
1.8 FIR structure (8/9)
- Advantage of FIR
- Use of DFT
- Robustness to round off error
- Linear phase
- Guaranteed stability
- Good for adaptive filter
- Disadvantage of FIR
- Computation load
- H/W complexity
cf. Infinite impulse response(IIR)
- Nonlinear phase
- Not always stable
- Easy to obtain from analog filter
- Suitable for sharp cutoff characteristic and
high speed
Seoul Natl Univ.
231.Introduction
1.8 FIR structure (9/9)
F I R
I I R
Seoul Natl Univ.
241.Introduction
1.9 Initial state dependency (1/2)
- Infinite impulse response (IIR)
dependent of
Linear
Initial state dependent
IIR
Seoul Natl Univ.
251.Introduction
1.9 Initial state dependency (2/2)
- Filter is to estimate stateThe initial state
is also a state It is not logical
to assume the initial state
Seoul Natl Univ.
261.Introduction
1.10 Performance criterion (1/3)
Maximum Likelihood
Minimum variance
Least square
Seoul Natl Univ.
271.Introduction
1.10 Performance criterion (2/3)
- Performance criterion for deterministic models-
filter- Minimax filter-
Least squares
Seoul Natl Univ.
281.Introduction
1.10 Performance criterion (3/3)
Objectives
Options
Stability
Small error
- Robustness
- w.r.t uncertainties
- w.r.t disturbance
Seoul Natl Univ.
291.Introduction
1.11 Extension to control receding horizon
control
What is the receding horizon control?
Which one do you think better ?
Seoul Natl Univ.
301.Introduction
1.11 Extension to control desired property
- Stability of the closed-loop systems
- Small tracking error
- Robustness stability tracking error
Seoul Natl Univ.
311.Introduction
1.11 Extension to control options for controls
Performance Criterion
I/O model
Signal Models
minimax
stochastic
LQG
infinite horizon
state space
LQ
deterministic
receding horizon
Given
Options
output feedback
state feedback
Finite memory control(including static control)
Dynamic(IIR control)
Control structure
Seoul Natl Univ.
321.Introduction
1.11 Extension to control objectives and design
procedures
Desired properties Stability Robustness Small
tracking error
Yes
No
Signal models
Optimal control
desired properties
Performance criterion LQG LQ Minimum entropy
Control structure
State feedback control Output feedback
controlDynamic controlFinite memory control
Seoul Natl Univ.
331.Introduction
1.11 extension to control performance criterion
with receding horizon
Seoul Natl Univ.
341.Introduction
1.11 extension to control receding horizon
output feedback control
Filter Kalman filter filter Mixed filer
State feedback receding horizon control LQC
Control
Question Is it optimal ?
Global optimal output feedback control
FMC (finite memory control)
cf) LQG
Seoul Natl Univ.
351.Introduction
1.11 extension to control receding horizon
output feedback control
Seoul Natl Univ.
361.Introduction
Contents of standard textbook on optimal control
and estimation
- 1. LQ control
- Finite horizon
- Infinite horizon
-
- 2. Kalman filter
- Finite horizon
- Infinite horizon
-
- 3. LQG control
- Finite horizon
- Infinite horizon
-
- 4. Full information control
- Finite horizon
- Infinite horizon
-
- 5. filter
- Finite horizon
- Infinite horizon
-
- 6. Output feedback control
- Finite horizon
- Infinite horizon
-
Covered in this class
Seoul Natl Univ.