Finite element methods - PowerPoint PPT Presentation

1 / 12
About This Presentation
Title:

Finite element methods

Description:

... =1 bi = bi / Error is orthogonal to the original base Point collocation method equality is required at finite dot points pi bi (p) ... – PowerPoint PPT presentation

Number of Views:207
Avg rating:3.0/5.0
Slides: 13
Provided by: bme100
Category:

less

Transcript and Presenter's Notes

Title: Finite element methods


1
Finite element methods
László Szirmay-Kalos
2
Representation of functions by finite data
Finite function series L(p) ? ??Lj bj (p)
1
1
box
tent
b1
b1
b2
b2
b3
b3
Piece-wise constant
Piece-wise linear
3
Representation of the radiance
  • Finite elements L(p) ? ??Lj bj (p)
  • bj total function system
  • box, tent, harmonic, Chebishev, etc.
  • diffuse radiosity piece-wise constant
  • non-diffuse case
  • partitioned hemisphere (piece-wise constant),
  • directional distributions (spherical harmonics)
  • illumination networks (links)

4
Rendering equation in function space
L(p) ??Lj bj (p)
?
?L
L
L
Le
b2
b1
L
Original rendering equation
Finite element approximation
5
Projected rendering equation
?L
L(p) ??Lj bj (p)
Basis functions
b2
Le
b1
L
b2
?F L
b1
Adjoint base
Le
L Le ?F L
6
Adjoint base
  • Equality is required in a subspace of adjoint
    basis functions b1, b2 ,..., bn
  • orthogonality

ltbi , bjgt 1 if ij and 0
otherwise
b2
?L
Le
L
b2
b1
projection
b1
7
Derivation of the projected rendering equation
  • FEM
  • Projecting to an adjoint base lt , bigt

L(p) ? ??Lj bj (p)
p(x,w)
??Lj bj (p) ? ??Lje bj (p) t ??Lj bj (p)
Li Lie ?? Lj lttbj ,bigt
8
Projected rendering equation linear equation
for Lj
Rij lttbj ,bigt
L Le R L
FEM 1. define basis functions and adjoint
basis function tesselation, function shape 2.
Evaluate Rij 3. Solve the linear equation for
L1, L2 ,, Ln 4. For any p L(p) ? ??Lj bj (p)
9
Galerkins method
  • The base and the adjoint base are the same except
    for a normalization constant
  • ltbi ,bigt1 ? bi bi /ltbi ,bigt
  • Error is orthogonal to the original base
  • Point collocation method
  • equality is required at finite dot points pi
  • bi (p) ?(p - pi)

10
Example Diffuse caseGalerkinconstant basis
ltu,vgt?Su(x)v(x)dx ? ltbi,bigt Ai
Aj
bi is 1 on patch i
w
h(x,-w)
?
Ai
x
lttbj,bigt 1/Ai ?Ai?? bj (h(x,-w)) fr(x) cos?
dwdx
11
Solid angle ? Area integral
Aj
?
h(x,-w) y
w
?
Ai
dw dy cos ?/ x - y2
x
lttbj,bigt1/Ai?Ai?Ajv(x,y) fr(x)
dydx ai Fij
cos? cos ?
x - y2
Patch-patch form factor
Albedo
cos? cos ?
ai fri ? Fij1/Ai ?Ai?Aj v(x,y)
dydx
? x - y2
12
Example Diffuse casePoint collocationlinear
basis
bi
bi ?(x - xi)
Aj
w
h(x,-w)
?
Ai
xi
lttbj,bigt ?? bj (h(xi,-w)) fr(xi) cos? dw
cos? cos ?
?Aiv(xi,y) bj (y) fr(xi) dy
ai Fij point-patch
xi - y2
Write a Comment
User Comments (0)
About PowerShow.com