Symbolic Algorithms for Infinite-state Systems - PowerPoint PPT Presentation

1 / 22
About This Presentation
Title:

Symbolic Algorithms for Infinite-state Systems

Description:

Title: Quantitative Solution of Concurrent Games Author: rupak Last modified by: sriramr Created Date: 6/22/2001 9:48:01 PM Document presentation format – PowerPoint PPT presentation

Number of Views:62
Avg rating:3.0/5.0
Slides: 23
Provided by: rup54
Category:

less

Transcript and Presenter's Notes

Title: Symbolic Algorithms for Infinite-state Systems


1
Symbolic Algorithms forInfinite-state Systems
  • Rupak Majumdar (UC Berkeley)
  • Joint work with
  • Luca de Alfaro (UC Santa Cruz)
  • Thomas A. Henzinger (UC Berkeley)

2
Closed Reactive Systems
  • Transition systems
  • S Set of states (possibly infinite)
  • ? Set of actions
  • post S X ? ? S Successor function

3
Lifted Transition Systems
  • S Set of states
  • ? Set of actions
  • Post 2S X ? ? 2S Successor function
  • Post(R) t ? s? R ? a . t ?(s,a)
  • Pre 2S X ? ? 2S Predecessor function
  • Pre(R) s ?a . ?(s,a) ? R

4
Observables
  • Group interesting sets of states as observables
  • Example
  • Processor 1 is in critical section
  • Thermostat temperature is between 32 and 40
  • Observable transition system
  • Transition system
  • Set of observables ? O1,O2,, Oi?S

5
Symbolic Transition Systems
  • S, ?, Pre, Post, ?
  • Set of regions RR1,R2,, Ri?S
  • ? ?R
  • Pre, Post R X ??R
  • ?,?,\ RXR?R
  • ? RXR ? T,F

Computable
Symbolic semi-algorithm Start with regions in ?
and compute new regions using the operations above
6
Example Rectangular Hybrid Automata
  • General class polyhedral hybrid systems Alur et
    al
  • Other classes Petri nets, FIFO automata, ...

7
Verification Questions
  • Q1 Reachability
  • Is an unsafe state reachable? EF unsafe
  • Q2 Linear Temporal Logic (regular properties)
  • Is progress being made? E(GF fair ? F goal)
  • Q3 ½ Branching temporal logic(ECTL,ACTL)
  • Nested reachability EF (unsafe ? EF err1 ? EF
    err2)
  • Q4 Branching temporal logic (CTL)
  • Is progress possible? AG(tick -gt EXEF tick)

8
Q1 Reachability EF
  • Is there a trajectory to an unsafe state?

R final loop if R ? init?? then yes if
Pre(R) ? R then no R R ? Pre(R) end
. . .
init
final
final ?Pre(final)
Similar algorithm by iterating Posts
Operations used Pre, ?
9
Q2 LTL Model Checking
  • Example Repeated Reachability EGF
  • Can a set of states be reached infinitely often?
  • EGF final

init
final
R
. . . .
Operations Pre,?, ? with observables
R2 EXEF R1
R1 EXEF final
10
Q3 ECTL model cecking
  • ECTL nested reachability
  • EF(goal1 /\ EF(goal2) /\ EF(goal3))
  • Operations Pre, ?, ?

EF (goal1 /\ EF goal2 /\ EF goal3)
EF goal3
EF goal2
goal1 /\ EF goal2 /\ EF goal3
11
Q4 CTL model checking
  • CTL can all trajectories from init to goal1 be
    extended to goal2?
  • AG(goal1 -gt EF goal2) EF (goal1 /\ EF goal2)
  • Operations Pre, ?, ?, \

EF (goal1 /\ EF goal2)
EF goal2
12
Three Specification Logics
  • L1 CTL (or, mu calculus)
  • L2 ECTL or ACTL
  • L3 LTL

13
Three Symbolic Semi-Algorithms
  • A1 Close ? under pre, ?, ?, \
  • A2 Close ? under pre, ?, ?
  • A3 Close ? under pre, ?, ?obs
  • (intersection with observables)

P0 ? for i 1,2,3, Pi Pi-1 ? pre(R) R
? Pi-1 ? R1 ? R2
R1,R2 ? Pi-1 ? R1 ? R2 R1,R2
? Pi-1 ? R1 \ R2 R1,R2 ?
Pi-1 until Pi Pi-1
14
Three State Equivalences
  • E1 Bisimilarity
  • E2 Similarity (mutual simulation)
  • E3 Trace Equivalence

15
Similarity
  • Similarity moves can be matched
  • Bisimilarity Symmetric similarity
  • Trace equivalence same languages

?
?
16
Triad
Symbolic algorithms
State equivalences
Logics
L1 CTL L2 ECTL L3 LTL
A1 PreBoolean A2 Pre Positive
Boolean A3 Pre Positive Boolean
with ? only with observables
E1 Bisimilarity E2 Similarity E3 Trace
equivalence
17
Ai Symbolic semi-algorithm
Li State Logic
Model-checks
i 1,2,3
computes
induces
Ei State Equivalence
All regions definable by Li are generated by Ai
If Ai terminates, then symbolic model checking of
Li terminates
18
Ai Symbolic semi-algorithm
Li State Logic
Model-checks
i 1,2,3
computes
induces
Ei State Equivalence
States s and t are Ei equivalent iff for all
regions R generated by Ai, s?R iff t?R
Ai terminates iff Ei has finite index
19
Ai Symbolic semi-algorithm
Li State Logic
Model-checks
i 1,2,3
computes
induces
Ei State Equivalence
States s and t are Ei equivalent iff for all
formulas ? of Li, s satisfies ? iff t satisfies ?
If Ei has finite index, then Li can be model
checked on a finite quotient
20
Classification of systems STACS00
  • STS1
  • A1 terminates, finite bisimilarity, can model
    check CTL
  • Ex Timed automata, O-minimal systems
  • STS2
  • A2 terminates, finite similarity, can model check
    ?CTL
  • Ex 2D rectangular automata
  • STS3
  • A3 terminates, finite trace equivalence, can
    model check LTL
  • Ex initialized rectangular automata

21
Summary
  • The triad (algorithm, equivalence, logic)
    provides a useful tool to prove decidability and
    provide symbolic algorithms for infinite-state
    systems
  • The characterization provides a symbolic model
    checking algorithm, given some structural
    property of the system

22
Summary
  • The symbolic approach shows how to engineer a
    model checker
  • Export a Region interface implementing the
    symbolic operations
  • The model checking algorithm is independent of
    the front end syntax and region representation
  • E.g., BLAST toolkit for software
Write a Comment
User Comments (0)
About PowerShow.com