Title: Flywheel Problem
1Flywheel Problem
2Finding acceleration and velocity
y
r xexyey rer ercos?exsin?ey
z
er
e?
r
yey
v d/dt(rer)
ad/dt(d/dt(rer))
x
xex
3Finding acceleration and velocity
v?r e?
vd/dt(rer)rd/dt (cos?exsin?ey)
v r(-sin?(d?/dt) excos ?(d?/dt)ey )
(1)
Now adv/dt d/dt(?r e? ) ?rd/dt(e?)
- Now recall that
- e? (cos?ex - sin ?ey)
- ?(d?/dt)
This becomes a- ?2r er
Substitution into (1) gives the form v?r e?
(2)
4Kinetic Energy
- K(1/2)I?2 where I ?r2dm
- I ? ? r2dV ???? r2 dtdrd? (2p?tR4)/4
- d?2prdr
- ?dtt, thickness
Substitution gives K(1/4) p?tR4?2
5Material consideration
- Yield- At high speeds centrifugal forces cause
tensile strength - Material needs to be designed resistant to these
stresses - Youngs modulus and Possions ratio must be
accounted for in design
6Stress-Strain relations
- Assuming plane stress tltltR
- Use Strain-Displacement relationships given
- uru(r), uz, u?r?t
errd/d?(ur), e??(1/r)d/d?(u?) ur/r, ezzd/dz
(uz)
e?r (1/2)(d/dz(u?) r-1d/d?(uz)-u?/r) e?z(1/2)(d
/dz(u?)r-1d/d?(uz)) erz(1/2)(d/dr(uz)d/dz(ur))
7Stress-Strain relations
Simplifying we find that
errd/d?(ur), e??ur/r, ezzd/dz (uz)
e?r (1/2)(d/dz(u?) r-1d/d?(uz)-u?/r)
0 e?z(1/2)(d/dz(u?)r-1d/d?(uz))
0 erz(1/2)(d/dr(uz)d/dz(ur)) 0
8Stress-Strain relations
Using the governing Stress-Strain relation
sij (E/(1?) eij (v/(1-2v))(S ekk)dij
s?z srz sr? 0
szz(E/(1-v2))(errve??) 0 (from assumption)
srr(E/(1-v2))(errve??)
s??(E/(1-v2))(verre??)
9Equation of Motion for ur
Since looking for ur use the following Equation
of Motion
d/dr(srr)r-1d/d?(sr?)d/dz(srz)(1/r)(srr-
s??)?d2/dt2(ur) (ignores body force ?br)
Using the stresses derived earlier we can
simplify to the following
d/dr(srr)(1/r)(srr- s??)?d2/dt2(ur) -??2r
d2/dr2(ur)(1/r)(d/dr(ur))- (ur)/r2
-??2r(1-v2)/E (3)
10Equation of Motion for ur
d2/dr2(ur)(1/r)(d/dr(ur))- (ur)/r2
-??2r(1-v2)/E (3)
This equation will solve for ur. But first
re-write using reverse chain rule
d/dr(1/r)(d/dr(urr)) -??2r(1-v2)/E
Integrating yields the solution
urArBr-1-((1-v2)/8E)??2r3
11Stress field
- Using the stress-strain and the
strain-displacement relations derived earlier
srr(E/(1-v2))(errve??)
s??(E/(1-v2))(verre??)
errd/d?(ur), e??ur/r, ezzd/dz (uz)
Plug into new equation for ur setting boundary
conditions
sr(R)0 (no mass rotating and
pulling on outside) ur(0)0 no
displacement in the r direction at center
12Stress field
- After solving for A and B substitute to
- obtain final Stresses
srr??2(3v)/8(R2)(1-(r/R)2) s??(R2 ??2(3v)/8
)1-(r/R)2((13v)/(v3))
- When r0 you get the maximum stress
srrs??(R2 ??2(3v))/8
13Product bound
Plug in max stresses to mises yield condition
to obtain s(mises) s(max)
s(max)lts(yield)
?Rlt 2(2s(yield)/(?(3v))).5