Lecture 3-1: Coding and Error Control - PowerPoint PPT Presentation

1 / 16
About This Presentation
Title:

Lecture 3-1: Coding and Error Control

Description:

Lecture 3-1: Coding and Error Control ECE591-01 Universit t Karlsruhe Institut f r Telematik Mobilkommunikation SS 1998 Prof. Dr. Dr. h.c. G. Kr ger E. Dorner / Dr ... – PowerPoint PPT presentation

Number of Views:77
Avg rating:3.0/5.0
Slides: 17
Provided by: ThomasF190
Category:

less

Transcript and Presenter's Notes

Title: Lecture 3-1: Coding and Error Control


1
Lecture 3-1 Coding and Error Control
  • ECE591-01

2
Signals
  • Physical representation of data
  • Function of time and location
  • Signal parameters parameters representing the
    value of data
  • classification
  • continuous time/discrete time
  • continuous values/discrete values
  • analog signal continuous time and continuous
    values
  • digital signal discrete time and discrete
    values
  • Signal parameters of periodic signals period T,
    frequency f1/T, amplitude A, phase shift ?
  • sine wave as special periodic signal for a
    carrier s(t) At sin(2 ? ft t ?t)

3
Signals
  • Different representations of signals
  • amplitude (amplitude domain)
  • frequency spectrum (frequency domain)
  • phase state diagram (amplitude M and phase ? in
    polar coordinates)
  • Composed signals transferred into frequency
    domain using Fourier transformation
  • Digital signals need
  • infinite frequencies for perfect transmission
  • modulation with a carrier frequency for
    transmission (analog signal!)

Q M sin ?
A V
A V
ts
?
I M cos ?
f Hz
?
4
Multiplexing
  • Multiplexing in 4 dimensions
  • space (si)
  • time (t)
  • frequency (f)
  • code (c)
  • Goal multiple use of a shared medium
  • Important guard spaces needed!

channels ki
k2
k3
k4
k5
k6
k1
c
t
c
s1
t
s2
f
f
c
t
s3
f
5
Frequency multiplex
  • Separation of the whole spectrum into smaller
    frequency bands
  • A channel gets a certain band of the spectrum for
    the whole time
  • Advantages
  • no dynamic coordination necessary
  • works also for analog signals
  • Disadvantages
  • waste of bandwidth if the traffic is
    distributed unevenly
  • inflexible

k2
k3
k4
k5
k6
k1
c
f
t
6
Time multiplex
  • A channel gets the whole spectrum for a certain
    amount of time
  • Advantages
  • only one carrier in themedium at any time
  • throughput high even for many users
  • Disadvantages
  • precise synchronization necessary

k2
k3
k4
k5
k6
k1
c
f
t
7
Time and frequency multiplex
  • Combination of both methods
  • A channel gets a certain frequency band for a
    certain amount of time
  • Example GSM
  • Advantages
  • protection against frequency selective
    interference
  • but precise coordinationrequired

k2
k3
k4
k5
k6
k1
c
f
t
8
Code multiplex
  • Each channel has a unique code
  • All channels use the same spectrum at the same
    time
  • Advantages
  • bandwidth efficient
  • no coordination and synchronizationnecessary
  • good protection against interference
  • Disadvantages
  • varying user data rates
  • more complex signal regeneration
  • Implemented using spread spectrum technology

k2
k3
k4
k5
k6
k1
c
f
t
9
Modulation
  • Digital modulation
  • digital data is translated into an analog signal
    (baseband)
  • ASK, FSK, PSK
  • differences in spectral efficiency, power
    efficiency, robustness
  • Analog modulation
  • shifts center frequency of baseband signal up to
    the radio carrier
  • Basic schemes
  • Amplitude Modulation (AM)
  • Frequency Modulation (FM)
  • Phase Modulation (PM)

10
Modulation and Demodulation
analog baseband signal
digital data
digital modulation
analog modulation
radio transmitter
101101001
radio carrier
analog baseband signal
digital data
synchronization decision
analog demodulation
radio receiver
101101001
radio carrier
11
Digital modulation
1
0
1
  • Modulation of digital signals known
  • as Shift Keying
  • Amplitude Shift Keying (ASK)
  • very simple
  • low bandwidth requirements
  • very susceptible to interference
  • Frequency Shift Keying (FSK)
  • needs larger bandwidth
  • Phase Shift Keying (PSK)
  • more complex
  • robust against interference

t
1
0
1
t
1
0
1
t
12
Frequency Shift Keying (FSK)
13
Advanced Phase Shift Keying
  • BPSK (Binary Phase Shift Keying)
  • bit value 0 sine wave
  • bit value 1 inverted sine wave
  • 0 Same phase, 1Opposite phase
  • A cos(2pft), A cos(2pftp)
  • low spectral efficiency
  • robust, used e.g. in satellite systems
  • QPSK (Quadrature Phase Shift Keying)
  • 2 bits coded as one symbol
  • symbol determines shift of sine wave
  • needs less bandwidth compared to BPSK
  • 11A cos(2pft45),
  • 10A cos(2pft135),
  • 00A cos(2pft225),
  • 01A cos(2pft315)

A
t
01
11
10
00
14
Quadrature Amplitude Modulation
  • Quadrature Amplitude Modulation (QAM)
  • combines amplitude and phase modulation
  • it is possible to code n bits using one symbol
  • 2n discrete levels, n2 identical to QPSK
  • Bit error rate increases with n, but less errors
    compared to comparable PSK schemes
  • Example 16-QAM (4 bits 1 symbol)
  • Symbols 0011 and 0001 havethe same phase f, but
    differentamplitude
  • 0000 and 1000 havedifferent phase, but same
    amplitude.

15
Channel Capacity
  • Capacity Maximum data rate for a channel
  • Nyquist Theorem Bandwidth B
  • Data rate lt 2 B
  • Bi-level Encoding Data rate 2 Bandwidth

Multilevel Data rate 2 Bandwidth log 2 M
Example M4, Capacity 4 Bandwidth
16
Shannons Theorem
  • Bandwidth B Hz
  • Signal-to-noise ratio S/N
  • Maximum number of bits/sec B log2 (1S/N)
  • Example Phone wire bandwidth 3100 Hz
  • S/N 30 dB
  • 10 Log 10 S/N 30
  • Log 10 S/N 3
  • S/N 1000
  • Capacity 3100 log 2 (11000)
  • 30,894 bps
Write a Comment
User Comments (0)
About PowerShow.com