Reactions in Aqueous Solutions - PowerPoint PPT Presentation

1 / 106
About This Presentation
Title:

Reactions in Aqueous Solutions

Description:

A Double Replacement (Metathesis) Reaction. A (solid) precipitate is formed. ... For the metathesis reaction. 2 KF Pb(NO3)2 PbF2(s) 2 KNO3. formula unit equation ... – PowerPoint PPT presentation

Number of Views:1817
Avg rating:3.0/5.0
Slides: 107
Provided by: chem230
Category:

less

Transcript and Presenter's Notes

Title: Reactions in Aqueous Solutions


1
Chapter 5
  • Reactions in Aqueous Solutions

2
Chapter goals
  • Understand the nature of ionic substances
    dissolved in water.
  • Recognize common acids and bases and understand
    their behavior in aqueous solution.
  • Recognize and write equations for the common
    types of reactions in aqueous solution.
  • Recognize common oxidizing and reducing agents
    and identify common oxidation-reduction
    reactions.
  • Define and use the molarity in solution
    stoichiometry.

3
Solution
  • homogeneous mixture
  • can be gas, liquid, or solid
  • solvent component present in highest proportion
  • exception - water
  • solute component(s) in solution other than
    solvent
  • We will mostly study aqueous solutions human
    body is 2/3 water.

4
Examples
  • mixture of 35 naphthalene
  • and 65 benzene
  • solvent - benzene
  • solute naphthalene
  • mixture of 10 ethanol, 40 methanol, and 50
    propanol
  • solvent - propanol
  • solute - ethanol and methanol

5
Examples
  • mixture of 40 ethanol, 40 methanol, and 20
    butanol
  • solvent - ethanol/methanol
  • mixed solvent
  • solute butanol
  • mixture of 40 ethanol, 50 propanol, and 10
    water
  • solvent - water
  • solute - ethanol and propanol

6
Next
  • We will focus on compounds that
  • produce ions in aqueous solutions.
  • They are salts, acids, and bases.

7
Salts
  • Salts ionic compounds made of cations other than
    H and anions other than OH- or O2-
  • NaCl Na Cl-
  • K2SO4 K SO42-
  • FeBr3 Fe3 Br-
  • Zn3(PO4)2 Zn2 PO43-
  • Ca(HCO3) Ca2 HCO3-

8
Electrolyte
  • substance that dissolves to produce an
    electrically conducting medium
  • form ions in solution (dissociates/ionizes)
  • examples
  • soluble ionic compounds
  • H2O
  • KBr(s) ?? K(aq) Br(aq)
  • H2O
  • Acids, HCl(g) ?? H(aq) Cl(aq)
  • bases, NH3 H2O NH4 OH

9
Nonelectrolytes
  • do not form ions in solution
  • do not form electrically conducting media upon
    dissolution
  • Examples molecular compounds (alcohols, sugars
    acetone)
  • H2O
  • CH3OH(l) ?? CH3OH(aq) N.R.
  • Glucose C6H12O6(s) ? C6H12O6(aq) N.R.
  • Sucrose C12H22O11(s) ? C12H22O11(aq) N.R.
  • N.R. no reaction
  • no dissociation/ionization

10
Types of Electrolytes
  • Strong dissociate 100
  • most ionic compounds (soluble salts), strong
    acids, and strong bases
  • H2O
  • KBr(s) ?? K(aq) Br(aq)
  • HCl(g) ?? H(aq) Cl(aq)
  • Weak insoluble salts, weak acids and bases,
    water, and certain gases (e.g. CO2)
  • dissociate only slightly in water
  • H2O
  • HF(g) H(aq) F(aq)

11
Solubility of Ionic compounds in Water
Solubility Rules
  • Soluble Compounds
  • 1. alkali metal salts (Li, Na, K, Rb, )
    except potassium perchlorate
  • 2. ammonium (NH4) salts
  • 3. all nitrates(NO3-), chlorates (ClO3-),
    perchlorates (ClO4-), and acetates (C2H3O2-),
    except silver acetate and potassium perchlorate
  • 4. all Cl-, Br-, and l- are soluble except for
    Ag, Pb2, and Hg22 salts
  • 5. all SO42- are soluble except for Pb2, Sr2,
    and Ba2 salts

12
Solubility of Ionic compounds in Water Rules
  • Insoluble or slightly soluble Compounds
  • 6. metal oxides (O2-) except those of the alkali
    metals, Ca2, Sr2, and Ba2
  • 7. hydroxides (OH-) except those of the alkali
    metals, Ba2, and Sr2. calcium hydroxide is
    slightly soluble
  • 8. carbonates, phosphates, sulfides, and sulfites
    except those of the alkali metals and the
    ammonium ion (NH4)
  • 9. for salts of Cr2O72-, P3-, CrO42-, C2O42-,
  • assume they are insoluble except for IA metals
    and NH4 salts

13
Precipitation ReactionsA Driving Force in
Chemical Reactions
  • formation of insoluble solid (precipitate, ppt)
    is a common reaction in aqueous solutions
  • reactants are generally water-soluble ionic
    compounds
  • once substances dissolve in water they dissociate
    to give the appropriate cations and anions
  • if the cation of one compound forms an insoluble
    compound with the anion of another, precipitation
    will occur

14
Precipitation ReactionA Double Replacement
(Metathesis) Reaction
  • Both ionic compounds trade partner ions
  • __________
  • AB(aq) CD(aq) ?? AD(s) CB(aq)
  • _______
  • AD is an insoluble or slightly soluble salt
  • A, B-, C, and D- are ions
  • AgNO3(aq) NaCl(aq) ? AgCl(s) NaNO3(aq)
  • weak
    electrolyte
  • (unionized
    precipitate)

15
Precipitation ReactionA Double Replacement
(Metathesis) ReactionA (solid) precipitate is
formed.
16
Example complete and balance the equation
  • (NH4)3PO4(aq) MgSO4(aq) ? MgPO4(s) NH4SO4(aq)
  • we will write the right subscripts later
  • Using the solubility rules, predict if at least
    one
  • product is going to be insoluble in water.
  • According to rule 8, MgPO4 (subscripts not
  • right) is not soluble in water.
  • Ions are Mg2, PO43-, NH4, and SO42-
  • subscripts
  • (NH4)3PO4(aq) MgSO4(aq) ? Mg3(PO4)2(s)
    (NH4)2SO4(aq)
  • balancing
  • 2(NH4)3PO4(aq) 3MgSO4(aq) ? Mg3(PO4)2(s)
    3(NH4)2SO4(aq)

17
Example complete and balance the equation
  • Na2SO4(aq) BaBr2(aq) ?
  • Na2SO4(aq) BaBr2(aq) ??BaSO4(s) NaBr
  • Na2SO4 BaBr2 ??BaSO4(s) 2NaBr(aq)
  • driving force formation of insoluble
    barium sulfate (precipitate)
  • Os(NO3)5(aq) Rb2S(aq) ?
  • Os(NO3)5 Rb2S ? Os2S5(s) RbNO3(aq)
  • 2 Os(NO3)5 5 Rb2S ? Os2S5(s) 10 RbNO3
  • driving force form. of insoluble sulfide
  • (precipitate)

18
Net Ionic Equations Spectator Ions
  • The equation
  • AgNO3(aq) NaCl(aq) ? AgCl(s) NaNO3(aq)
  • is not quite correct, because three salts are
  • dissociated in ions while AgCl is a precipitate.
  • Ag(aq) NO3-(aq) Na(aq) Cl-(aq) ? AgCl(s)
    Na(aq) NO3-(aq)
  • before reaction
    after reaction
  • Na and NO3- are present on both sides of
    equation, i.e.,
  • before and after reaction. They are called
    spectator ions do
  • not participate in net reaction can be removed
    from the
  • equation, but they remain in the solution.
  • Ag(aq) Cl-(aq) ? AgCl(s) is the net ionic
    equation

19
Net Ionic Equations Spectator Ions
  • For two previous examples
  • 2(NH4)3PO4(aq) 3MgSO4(aq) ? Mg3(PO4)2(s)
    3(NH4)2SO4(aq)
  • 6NH4(aq) 2PO43-(aq) 3Mg2(aq) 3SO42-(aq) ?
    Mg3(PO4)2(s)
  • before reaction
    6NH4(aq) 3SO42-(aq)

  • after
    reaction
  • 3Mg2(aq) 2PO43-(aq) ? Mg3(PO4)2(s) is the
    net equation
  • spectator ions are eliminated from the
    equation
  • Na2SO4(aq) BaBr2(aq) ??BaSO4(s) 2NaBr(aq)
  • 2Na(aq) SO42-(aq) Ba2(aq) 2Br-(aq) ?
    BaSO4(s) 2Na(aq) 2Br-
  • Ba2(aq) SO42-(aq) ? BaSO4(s) net ionic
    equation

20
Net Ionic Equations Spectator Ions
  • For the metathesis reaction
  • 2 KF Pb(NO3)2 ? PbF2(s) 2 KNO3
  • formula unit equation
  • spectator ions are eliminated
  • 2K 2F Pb2 2 NO3 ? PbF2 2K 2NO3
  • ionic equation
  • PbF2 is the precipitate
  • 2F(aq) Pb2(aq) ? PbF2(s)
  • net ionic equation

21
Net Ionic Equations Spectator Ions
  • NH4Cl(aq) KNO3(aq) ? NH4NO3(aq) KCl(aq)
  • NH4 Cl K NO3 ? NH4 NO3

  • K Cl
  • all ions are spectators all can be cancelled
  • no net ionic equation
  • no driving force for reaction
  • N.R. (no reaction)

22
Acids and Bases
  • Acid
  • Arrhenius definition
  • substance that ionizes in water to produce H,
    hydrogen ion, and hence increases the
    concentration of this ion
  • HCl(aq) ? H(aq) Cl(aq)
  • Brønsted-Lowry definition
  • substance capable of donating H
  • HCl H2O ? H3O Cl(aq)

23
Acids and Bases
  • Base
  • Arrhenius definition
  • substance that increases the concentration of OH
    in aqueous solution
  • KOH(aq) ? K(aq) OH(aq)
  • NH3 H2O NH4 OH
  • Brønsted/Lowry definition
  • substance capable of accepting H
  • KOH(aq) ? K(aq) OH(aq)
  • OH H ? H2O (OH from NaOH accepts H)
  • NH3 H2O NH4 OH (NH3 accepts
    H)

24
Water can act as both an acid and a base it is
an amphoteric substance
  • HClO4 H2O ? H3O ClO4
  • acid base
  • (accepts H from HClO4)
  • NH3 H2O NH4 OH
  • base acid
  • (donates H to NH3)

25
Strong Acids
  • dissociate 100
  • HX, X Cl, Br, I hydroic acid
  • HNO3 nitric acid
  • HClO3 chloric acid
  • HClO4 perchloric acid
  • H2SO4 (first proton) sulfuric acid
  • H2SO4(aq) ? H(aq) HSO4-(aq)
  • week HSO4-(aq) H(aq) SO42-(aq)

26
Weak Acids
  • dissociate lt100
  • most other acids
  • HF hydrofluoric acid
  • HCN hydrocyanic acid
  • HNO2 nitrous acid
  • CH3CO2H acetic acid
  • H2CO3 carbonic acid (both protons)
  • H3PO4 phosphoric acid (all protons)
  • H2SO3 sulfurous acid
  • oxalic acid H2C2O4(aq) H(aq) HC2O4-(aq)

27
Strong Bases
  • dissociate 100
  • alkali metal hydroxides
  • LiOH, NaOH, KOH, RbOH
  • name lithium hydroxide
  • hydroxide of
  • Ca Ca(OH)2 calcium hydroxide
  • Ba Ba(OH)2
  • Sr Sr(OH)2

28
Neutralization Reactions
  • acid OH-ctg. base ? salt water
  • HF(aq) KOH(aq) ? KF(aq) H2O
  • HF(aq) K(aq) OH(aq) ? K(aq) F(aq) H2O
  • HF(aq) OH(aq) ? F(aq) H2O net ionic
  • spectator ions are eliminated from equation
  • HF is a week acid and HCl is a strong acid
  • acid non-OH-ctg base ? salt
  • HCl(aq) NH3(aq) ? NH4Cl(aq)
  • H(aq) Cl(aq) NH3(aq) ? NH4(aq) Cl(aq)
  • H(aq) NH3(aq) ? NH4(aq) net ionic equation

29
Formation of a Weak Acid or Base as a Driving
Force
  • HNO3(aq) KCN(aq) ? HCN(aq) KNO3(aq)
  • H(aq) NO3(aq) K(aq) CN(aq) ? HCN (aq)

  • K(aq) NO3(aq)
  • H(aq) CN(aq) ? HCN(aq) (a weak acid)
  • NH4Cl NaOH(aq) ? NH4OH NaCl(aq)
  • NH4(aq) Cl(aq) Na(aq) OH(aq) ? NH4OH

  • Na(aq) Cl(aq)
  • NH4(aq) OH(aq) ? NH4OH (a weak base)
  • NH4OH is NH3 in water, i.e., NH3 H2O

30
When no Weak Electrolytes are Formed
  • HNO3(aq) KCl(aq) ? HCl(aq) KNO3(aq)
  • H(aq) NO3(aq) K(aq) Cl(aq) ?
  • H(aq) Cl(aq) K(aq) NO3(aq)
  • There is no net reaction N.R. No driving
    force
  • All ions are spectators.

  • BaCl2(aq) 2NaOH(aq) ? Ba(OH)2(aq) 2NaCl(aq)
  • Ba2(aq) 2Cl(aq) 2Na(aq) 2OH(aq) ?
  • Ba2(aq) 2OH(aq) 2Na(aq)
    2Cl(aq)
  • There is no net reaction N.R. No driving force

31
Gas Forming Reactions (a Driving Force)
  • Some of the weak acids and bases that are
  • formed at double replacement reactions
  • decompose to form a gas and water
  • CO2
  • Na2CO3(aq) 2HCl(aq) ? H2CO3(aq) 2NaCl(aq)
  • H2CO3(aq) ? H2O CO2(g)
  • Na2CO3(aq) 2HCl(aq) ? H2O CO2(g) 2NaCl(aq)
  • SO2
  • Na2SO3(aq) 2HCl(aq) ? H2SO3(aq) 2NaCl(aq)
  • H2SO3(aq) ? H2O SO2(g)
  • Na2SO3(aq) 2HCl(aq) ? H2O SO2(g) 2NaCl(aq)

32
Redox (Oxidation-Reduction) Reactions
  • involve transfer of electron(s)
  • oxidation loss of electron(s)
  • reduction gain of electron(s)
  • some can be identified when an
  • uncombined element is a reactant or a product
  • eg. Zn(s) Cu2(aq) ? Zn2(aq) Cu(s)
  • Zn ? Zn2
  • Zn(s) ? Zn2(aq) 2 e, oxidation
  • Cu2 ? Cu
  • Cu2(aq) 2e ? Cu(s), reduction

33
Single Displacement Reactions
  • Zn(s) CuCl2(aq) ? Cu(s) ZnCl2(aq)
  • Zn oxidized to Zn2
  • Cu2 reduced to Cu
  • occurs because zinc is more active than copper
  • Cl2(g) CuBr2(aq) ? Br2(l) CuCl2(aq)
  • Br oxidized from Br to Br2
  • Cl reduced from Cl2 to Cl
  • Cl is more active than Br

34
Oxidation Numbers
  • also an accounting tool
  • very useful
  • oxidation numbers of all atoms in substance add
    up to charge on substance
  • e.g.
  • zero for Al2(SO4)3 and H3PO4
  • 1 for NH4
  • 2 for Cr2O72

35
Assigning Oxidation Numbers, ON
  • ON 0 for all atoms in any substance in most
    elemental form, Na(s), Zn(s), Hg(l) H2(g),
    Cl2(g), I2(s), O2(g), C(s), P4(s), S8(s)
  • ON charge for monatomic ions
  • ON 1 for F in all compounds
  • ON 2 for O in compounds, usually
  • exceptions peroxide, O22, ON 1
  • superoxide, O2, ON 1/2
  • ON 1 for H in compounds, usually
  • exception ON 1 in metallic hydrides

36
Assigning Oxidation Numbers, ON
  • ON 1 for alkali metals in compounds
  • ON 2 for alkaline earth metals in compounds
  • ON 3 for Al in compounds
  • ON -1 for Cl, Br, and I in binary compounds
    except for those with oxygen

37
Assign ON to Each Atom in the Following Substances
  • WCl6
  • x 6(1) 0

  • x 6 0
  • x 6

1
?
38
  • ?
  • Na2S2O3
  • 2
    2x 6 0
  • 2x 6 2
  • x 2 ON of
    S

2
1
39
2
1
  • ?
  • Na2S4O8
  • 2
    4x 16 0
  • 4x 16 2
  • 14 7
  • x ON of S
  • 4 2

40
?
2
  • Cr2O72
  • 2x 14
    2
  • 2x 14 2
  • 12
  • x 6 ON
    of Cr
  • 2

41
1
2
  • H2C2O4
  • 2
    2x 8 0
  • 2x 8 2
  • 6
  • x 3
    ON of C
  • 2

42
?
1
  • MoBr5
  • x
    5 1
  • x 5 1
  • x 6 ON of Mo
    6

43
Oxidizing and Reducing Agents
  • In every redox reaction there is one reducing
  • agent (the one that is oxidized) and one
  • oxidizing agent (the one that is reduced)
  • ON increases ON
    decreases
  • The species is The
    species is
  • oxidized
    reduced

7 6 5 4 3 2 1 0 -1 -2 - 3 - 4 - 5 - 6 - 7
44
  • Activity (Electromotive) Series for metals

45
  • Li
  • K
  • Ba
  • Ca
  • Na
  • Mg
  • Al
  • Mn
  • Zn
  • Cr
  • Fe
  • Co
  • Ni
  • Sn
  • Pb
  • (H2)
  • Cu
  • Ag

46
Examples
  • Complete and balance each of the following
    chemical equations

47
Li K Ba Ca Na Mg Al Mn Zn Cr Fe Co Ni Sn Pb H2 Cu
Hg Ag Pt Au
  • A free and chemically active metal displacing
  • a less active metal from a compound
  • Mg FeCl3 ?
  • Mg FeCl3 ? Fe MgCl2
  • 3Mg(s) 2FeCl3(aq) ? 2Fe(s) 3MgCl2(aq)
  • Mg ? Mg2, oxidized Mg reducing agent
  • Fe3 ? Fe, reduced Fe3 oxidizing agent
  • Sn CrF3 ? Sn is less reactive than Cr
  • Sn CrF3 ? No Reaction
  • Pb(s) Au(ClO3)3(aq) ?
  • Pb(s) Au(ClO3)3(aq) ? Au(s) Pb(ClO3)2(aq)
  • 3Pb(s) 2Au(ClO3)3(aq) ? 2Au(s)
    3Pb(ClO3)2(aq)
  • Pb is oxidized Au3 is reduced

48
Li K Ba Ca Na Mg Al Mn Zn Cr Fe Co Ni Sn Pb H2 Cu
Hg Ag Pt Au
  • A free and chemically active metal displacing
  • a less active metal from a compound
  • Zn CrBr3 ?
  • Zn CrBr3 ? Cr ZnBr2
  • 3Zn(s) 2CrBr3(aq) ? 2Cr(s) 3 ZnBr2(aq)
  • Zn oxidized to Zn2 Zn reducing agent
  • Cr3 reduced to Cr Cr3 oxidizing agent
  • Ag(s) Hg(NO3)2 ? No Reaction
  • Ag is less reactive than Hg

49
  • A free and chemically active metal displacing
  • Hydrogen from acids or water
  • Fe HBr ?
  • Fe HBr ? H2 FeBr3
  • 2Fe 6HBr ? 3H2 2 FeBr3
  • Fe oxidized to Fe3 Fe reducing agent
  • H reduced to H2 H oxidizing agent
  • Cu HBr ? Cu less active than H2
  • Cu HBr ? No Reaction

Li K Ba Ca Na Mg Al Mn Zn Cr Fe Co Ni Sn Pb H2 Cu
Hg Ag Pt Au
50
  • A free and chemically active metal displacing
  • Hydrogen from acids or water
  • K(s) H2O(l) ?
  • 2K(s) 2H2O(l) ? 2 KOH(aq) H2(g)
  • K oxidized to K K reducing agent
  • H reduced to H2 H oxidizing agent
  • Ag(s) H2O(l) ? Ag less active than H2
  • Ag(s) H2O(l) ? No Reaction
  • Ni(s) H2SO4(aq) ?
  • Ni(s) H2SO4(aq) ? NiSO4(aq) H2(g)
  • Ni oxidized to Ni2 Ni reducing agent
  • H reduced to H2 H oxidizing agent

Li K Ba Ca Na Mg Al Mn Zn Cr Fe Co Ni Sn Pb H2 Cu
Hg Ag Pt Au
51
  • Which one of the following metals could
  • be used safely for lining a tank intended
  • for storage of sulfuric acid?
  • H2SO4
  • aluminum
  • iron
  • chromium
  • mercury
  • copper
  • tin

Li K Ba Ca Na Mg Al Mn Zn Cr Fe Co Ni Sn Pb H2 Cu
Hg Ag Pt Au
52
Nonmetal Activity Series
  • F
  • Cl
  • Br
  • I
  • same order as in periodic table

53
Complete and Balance
  • Cl2 FeBr3 ?
  • Cl2(g) FeBr3(aq) ? Br2(l) FeCl3(aq)
  • 3Cl2(g) 2FeBr3(aq) ? 3 Br2(l) 2 FeCl3(aq)
  • Cl2 oxidizing agent Br reducing agent
  • I2(s) NaF(aq) ? I2 is less active than F2
  • I2(s) NaF(aq) ? No Reaction
  • F2(g) NaCl(aq) ?
  • F2(g) 2 NaCl(aq) ? Cl2(g) 2 NaF(aq)
  • F2 oxidizing agent Cl reducing agent
  • Br2 FeCl3 ? Br less active than Cl
  • Br2 FeCl3 ? No Reaction

54
Identifying Oxidizing and Reducing Agents
  • 0 3
    0 2
  • 3Zn(s) 2CrBr3(aq) ? 2Cr(s) 3 ZnBr2(aq)
  • Zn oxidized to Zn2 Zn reducing agent
  • Cr3 reduced to Cr Cr3 oxidizing agent
  • 0 1
    2 0
  • Ni(s) H2SO4(aq) ? NiSO4(aq)) H2(g)
  • Ni oxidized to Ni2 Ni reducing agent
  • H reduced to H2 H oxidizing agent
  • 0 -1
    0 -1
  • F2(g) 2 NaCl(aq) ? Cl2(g) 2 NaF(aq)
  • F2 reduced Cl oxidized
  • F2 oxidizing agent Cl reducing agent

55
Identifying Oxidizing and Reducing Agents
  • The device for testing breath for the presence of
    alcohol is based on the following reaction.
    Identify the oxidizing and reducing agents
  • ON 1 6
  • 3CH3CH2OH(aq) 2Cr2O72(aq) 16H ?
  • ethanol orange-red
  • 3
  • 3CH3CO2H(aq) 4 Cr3(aq)
    11H2O
  • acetic acid green
  • ethanol oxidized (reducing agent)
  • Cr2O72 (dichromate ion) reduced (oxidizing agt.)

56
Balancing redox equations
  • ON 6 in acidic media
    (H)
  • Cr2O72(aq) Fe2(aq) ?
    Cr3(aq) Fe3(aq)
  • Cr2O72 6e- ? 2Cr3 (this the
    reduction)
  • Fe2 ? Fe3 e- (this is the
    oxidation)
  • Cr2O72 6e- 14H ? 2Cr3 (to have 6
    6, charge)
  • Cr2O72 6e- 14H ? 2Cr3 7H2O (to
    balance H O)
  • Cr2O72 6e- 14H ? 2Cr3 7H2O to
    equal of
  • 6?(Fe2 ? Fe3 e-)
    electrons
  • Cr2O72 14H 6Fe2 ? 2Cr3 7H2O
    6Fe3

57
Balancing redox equations
  • ON 7 4 in basic
    media (OH-) 4 6
  • MnO4(aq) SO32-(aq) ?
    MnO2(s) SO42-(aq)
  • MnO4 3e- ? MnO2 (this the
    reduction)
  • SO32- ? SO42- 2e- (this is the
    oxidation)
  • MnO4 3e- ? MnO2 4OH- (to equal
    charges, -4)
  • SO32- 2OH- ? SO42- 2e- (to equal
    charges, -4)
  • 2?(MnO4 3e- 2H2O ? MnO2 4OH-) to equal
    H, O,
  • 3?(SO32- 2OH- ? SO42- 2e- H2O) and
    electrons
  • 2MnO4 H2O 3SO32- ? 2MnO2 2OH-
    3SO42-

58
Measuring Concentrations of Compounds in Solutions
  • Concentration Terms

59
Parts Per
  • Hundred (percent, )
  • weight/weight, (w/w), (most common)
  • mass solute
  • x 100
  • mass solution
  • volume/volume, (v/v)
  • V solute
  • x 100
  • V solution

60
Parts Per
  • Hundred (percent, )
  • weight/volume, (w/v)
  • mass solute
  • x 100
  • V solution (mL)

61
Learning Check
  • A solution is prepared by mixing 15.0 g of
    Na2CO3 and 235 g of H2O. The final V of solution
    is 242 mL. Calculate the w/w and w/v
    concentration of the solution.
  • g solution 15.0 g Na2CO3 235 g H2O 250. g
  • 15.0 g solute
  • w/w x 100 6.00 Na2CO3
  • 250. g solution
  • 15.0 g solute
  • w/v x 100 6.20 Na2CO3
  • 242 mL solution

62
Molarity, M
  • The Molarity, M, usually known as the molar
  • concentration of a solute in a solution, is the
  • number of moles of solute per liter (1000 mL)
  • of solution/ or mmoles per mL of solution.
  • To calculate it we need moles of solute
  • and V(in liters) of solution (or mmol and mL)
  • mol solute mmol solute
  • M
  • V(L) solution V(mL) solution

63
Calculation of Molarity, M
  • What is the molarity of 500. mL NaOH solution if
  • it contains 6.00 g NaOH?
  • FW (NaOH) 40.0 g/mol (from periodic table)
  • How many moles of NaOH?
  • 1 mol NaOH
  • 6.00 g x 0.150 mol NaOH
  • 40.0 g NaOH
  • mol solute 0.150 mol
  • M 0.300 M NaOH
  • V(L) solution 0.500 L

  • (0.300 mol in 1 L)

64
Formality, F
  • is the same as molarity, but referred to ionic
  • compounds in aqueous solution
  • FW (formula weights) of solute per L of solution
  • 1 FW
  • FW g solute x of FW
  • g solute
  • FW ( of
    formula weights)
  • F
  • V(L) solution (volume in
    liters)
  • Formality Molarity

65
Molality, m
  • is the amount (moles) of solute per kg of
  • solvent (usually but not necessarily water).
  • What is the m of a solution prepared by
  • dissolving 25.3 g Na2CO3 in 458 g water?
  • 458 g 0.458 kg (after dividing by 1000)
  • 1 mol Na2CO3
  • 25.3 g Na2CO3 x 0.239 mol Na2CO3
  • 106.0 g Na2CO3
  • mol solute 0.239 mol
  • m 0.522 m Na2CO3
  • kg H2O 0.458 kg

  • (0.522 mol in 1 kg H2O)

66
Mole Fraction, X
  • is the amount (mol) of a given component of a
  • solution per mol of solution
  • Here we need moles of every component
  • (solute(s) and solvent) and the total
  • e.g. for a solution with n1, n2, n3, mol
  • ni
    ni
  • mol fraction Xi (no units)
  • n1 n2 n3
    nt
  • ni moles of component i (1, 2, 3, )
  • nt total number of moles

67
How many g of NaCl are contained in 250.0 mL of
0.2193 M NaCl solution?
  • 250.0 mL ? 1000 0.2500 L
  • Now, M as a conversion factor
  • 0.2193 mol
  • 0.2500 L x 0.0548 mol NaCl
  • 1 L soln
  • grams out of moles and formula weight (58.44)
  • 58.44 g NaCl
  • 0.0548 mol x 3.204 g NaCl
  • 1 mol NaCl

68
Making Solutions
  • Consider the making of 1.00 L of 1.00 M NaCl
    solution.
  • need 1.00 mol NaCl or 58.5 g NaCl
  • dissolve 58.5 g NaCl in 1.00 L water?
  • NO!!
  • dissolve 58.5 g NaCl in water and dilute to a
    total volume of 1.000 L

69
  • volumetric flask calibrated to contain, tc
  • pipet calibrated to deliver, td

70
Example Describe the preparation of 300.0 mL of
0.4281 M silver nitrate solution.
  • 300.0 mL ? 1000 0.3000 L AgNO3 FW 169.97
    g/mol
  • 0.4281 mol
  • 0.3000 L x 0.1284 mol AgNO3
  • 1 L soln
  • 169.97 g
  • 0.1284 mol x 21.82 g AgNO3
  • 1 mol AgNO3
  • Dissolve 21.82 g AgNO3 in 300.0 mL water?
  • NO!!
  • Dissolve 21.82 g AgNO3 in water and dilute to
    300.0 mL.

71
How many milliliters of 2.00 M HNO3 contain 24.0
g HNO3?
  • HNO3 FW 63.0 g/mol How many moles?
  • 1 mol HNO3
  • 24.0 g HNO3 x 0.381 mol HNO3
  • 63.0 g HNO3
  • Now the M with the volume on top to get mL
  • 1 L soln 1000
    mL
  • 0.381 mol x x 191 mL
  • 2.00 mol HNO3 1 L sln

72
How many grams of AlCl3 are needed to prepare 25
mL of a 0.150 M solution?
  • 25 mL ? 1000 0.025 L FW (AlCl3) 133.5
    g/mol
  • All at once
  • V(L) of soln and mol and FW
  • M to calculate to calculate
  • mol of AlCl3 g of AlCl3
  • 0.025 L x 0.150 mole x 133.5 g 0.500 g
    AlCl3
  • 1 L 1 mole

73
Dilution
  • the process of decreasing the concentration
  • of solutes in a solution by addition of solvent
  • or another solution that does not contain the
  • same solutes ChemNow 5.16 final excercise
  • volume increases and concentration decreases.
  • concentrated diluted solution

74
Example Calculate the concentration of a
solution made by diluting 25.0 mL of 0.200 M
methanol, CH3OH, solution to 100.0 mL.
  • Key for calculations moles of solute taken
  • from the concentrated solution are the same
  • in the diluted solution (only solvent is added.)
  • moles concentration x V M x V
  • Cc x Vc Cd x Vd Mc x Vc Md x Vd
  • one of the four is unknown
  • c concentrated d diluted
  • L or mL can be used for volume

75
Example Calculate the concentration of a
solution made by diluting 25.0 mL of 0.200 M
methanol, CH3OH, to 100.0 mL.
  • Mc x Vc Md x Vd
  • Md is the unknown
  • 25.0 mL x 0.200 M 100.0 mL x Md
  • 25.0 mL x 0.200 M
  • Md 0.0500 M
  • 100.0 mL

  • 0.0500 mole/L

76
How many mL of a 0.515 M NaBr solution must be
diluted to produce 500.0 mL of a 0.103 M NaBr
solution?
  • Mc x Vc Md x Vd Vc is the unknown
  • Vc x 0.515 M 500.0 mL x 0.103 M
  • 500.0 mL x 0.103 M
  • Vc 100.0 mL
  • 0.515 M

77
Serial Dilutions
  • Example Calculate the M of NaOH in a solution
  • made by diluting 25.0 mL of 0.928 M NaOH to
  • 200.0 mL and then diluting 50.0 mL of the
  • second solution to 100.0 mL. Mc x Vc Md x
    Vd
  • First dilution
  • 25.0 mL x 0.928 M
  • Md 0.116 M
  • 200.0 mL
  • Second dilution
  • 50.0 mL x 0.116 M
  • Md 0.0580 M
  • 100.0 mL

78
Solution Stoichiometry
  • Use of M, V, and coefficients in equations to
  • calculate any amount of reagent or product.
  • Example What volume of 0.273 M potassium
    chloride solution is required to react with
    exactly 0.836 mmol of silver nitrate?
  • KCl(aq) AgNO3(aq) ?
  • KCl(aq) AgNO3(aq) ? KNO3(aq) AgCl(s)
  • driving force, formation of precipitate AgCl
  • Key work with mmol of KCl and AgNO3

79
Solution Stoichiometry
  • What volume of 0.273 M KCl solution is required
  • to react with exactly 0.836 mmol of AgNO3 ?
  • KCl(aq) AgNO3(aq) ? KNO3(aq) AgCl(s)
  • First, calculate mmol of KCl
  • 1 mmol KCl
  • 0.836 mmol AgNO3 x 0.836 mmol
  • 1 mmol AgNO3
    KCl
  • Second, calculate volume of KCl solution
  • 1 mL
  • 0.836 mmol KCl x 3.06 mL of solution
  • 0.273 mmol
    (KCl)

80
Titration
Buret
Titrant
Erlenmeyer (conical) Flask
Titrate
81
Titration
  • buret calibrated td, fine tip to deliver small
    volumes accurately, stopcock for flow control
  • Erlenmeyer flask sloped walls allow swirling of
    solutions without spilling or splashing
  • Titrant solution containing reagent that will
    react with sample in well known manner
  • Titrate solution containing the sample

82
Titration
  • equivalence point point in a titration at which
    the exact stoichiometric amount of titrant has
    been added to react with the titrate
  • end point the point in a titration at which the
    indicator changes, titration stopped here and
    volume of titrant read (ChemNow 5.19 Exercise
    Titration)
  • ideally, end point equivalence point
  • reality, not so, error introduced, hopefully
    small error
  • Four parameters V, M of titrant and V, M of
    titrate. Usually one is unknown.

83
Titration
  • Example Calculate the concentration of
  • hydrochloric acid in a solution if 35.0 mL of
  • it required 28.9 mL of 0.178 M potassium
  • hydroxide solution for titration.
  • HCl titrated, V known, M unknown
  • (in this problem)
  • KOH titrant, V and M known

84
Titration
Buret
0.178 M KOH
HCl KOH ? KCl H2O
Erlenmeyer (conical) Flask
35.0 mL sample of HCl Soln, unknown M drops
indicator
85
Titration
  • Strategy mmol of KOH are calculated first.
  • Second, by using stoichiometry coefficients
  • mol of HCl are calculated.
  • Finally, M of HCl is calculated with mmol and
    V(mL)
  • 0.178 mmol KOH 1 mmol HCl
  • 28.9 mLx x 5.14 mmol
  • 1 mL 1 mmol
    KOH HCl
  • Based on the end point concept (mol ratio)
  • 5.14 mmol
  • MHCl 0.147 M (mol/L)
  • 35.0 mL
    (mmol/mL)

86
Example Calculate the concentration of arsenic
acid in a solution given that a 25.0 mL sample of
that solution required 42.2 mL of 0.274 M
potassium hydroxide for titration.
  • H3AsO4 KOH ? K3AsO4 H2O
  • H3AsO4 3 KOH ? K3AsO4 3 H2O
  • M of H3AsO4 is the unknown.
  • 1 mol H3AsO4 reacts with 3 mol KOH. That is
  • the mole ratio.
  • We can use mL and mmol instead of L and mol

87
Example Calculate the concentration of arsenic
acid in a solution given that a 25.0 mL sample of
that solution required 42.2 mL of 0.274 M
potassium hydroxide for titration.
  • H3AsO4 3 KOH ? K3AsO4 3 H2O
  • 0.274 mmol KOH 1 mmol H3AsO4
  • 42.2 mLx x 3.85 mmol
  • 1 mL 3 mmol
    KOH H3AsO4
  • 3.85 mmol
  • M H3AsO4 0.154 M (mol/L)
  • 25.0 mL
    (mmol/mL)

88
Purity Analysis A 1.034 g-sample of impure
oxalic acid is dissolved in water and an
acid-base indicator added. The sample requires
34.47 mL of 0.485 M NaOH solution to reach the
equivalence point. What is the mass of H2C2O4 and
what is its mass percent in the sample?
  • H2C2O4 2 NaOH ? Na2C2O4 2 H2O
  • Strategy mol of H2C2O4 out of mol of NaOH (by
  • using V and M). Then, mol of H2C2O4 will be
  • used to calculate g of H2C2O4 and, hence, of it
  • in the sample.
  • Coefficients are 1 for H2C2O4 and 2 for NaOH.

89
Oxalic acid Oxac M W 90.04 g/mol
  • 0.485 mol 1 mol Oxac
  • 34.47 mLx x 0.00836 mol
  • 1000 mL 2 mol NaOH
    Oxac
  • Based on the end point concept (mol ratio)
  • 90.04 g
  • 0.00836 mol x 0.753 g oxalic acid
  • 1 mol
  • 0.753 g oxac
  • Oxac x 100 72.8
  • 1.034 g of sample

90
Molar Mass of an Acid A 1.056 g of a pure acid,
HA, is dissolved in water and an acid-base
indicator added. The solution requires 33.78 mL
of 0.256 M NaOH solution to reach the equivalence
point. What is the molar mass of the acid?
We dont know what A is
  • HA NaOH ? NaA H2O
  • Strategy mol of HA out of mol of NaOH (by
  • using V and M). Then, mol of HA and g of HA
  • will be used to calculate the molar mass.
  • Coefficients are 1 for HA and 1 for NaOH.

91
Molar Mass of HA
  • 33.78 mL NaOH solution 0.03378 L
  • 0.256 mol NaOH 1 mol HA
  • 0.03378 Lx x 8.65x10-3
  • 1 L soln 1 mol
    NaOH mol HA
  • 1.056 g
    HA
  • Molar mass, M W 122 g/mol
  • 8.65x10-3
    mol HA
  • 122 grams per mol

92
Vinegar A 25.0-mL sample of vinegar (which
contains the weak acetic acid, CH3CO2H) requires
28.33 mL of a 0.953 M solution of NaOH for
titration to the equivalence point. What mass of
the acid, in grams, is in the vinegar sample and
what is the M of acetic acid in the vinegar?
  • CH3CO2H NaOH ? NaCH3CO2 H2O
  • Strategy mol of CH3CO2H (HOAc) out of mol of
  • NaOH (by using V and M). Then, g of HOAc will
  • be calculated with the molar mass. The M will
  • be calculated by using the volume of vinegar.
  • Coefficients are 1 for HOAc and 1 for NaOH.

93
CH3CO2H HOAc M W 60.05 g/mol
  • 0.953 mol 1 mol HOAc
  • 28.33 mLx x 0.0270 mol
  • 1000 mL 1 mol NaOH
    HOAc
  • 60.05 g
  • 0.0270 mol x 1.62 g acetic acid in vinegar
  • 1 mol
  • For the molarity, Vvinegar 25.0 mL 0.0250 L
    (soln)
  • 0.0270 mol HOAc
  • M HOAc 1.08 M
  • 0.0250 L soln

94
Problem 75 of textbook To analyze an
iron-containing compound, you convert all the
iron into Fe2 in aqueous solution and then
titrate the solution with standardized KMnO4. The
balanced-net ionic equation isMnO4- 5Fe2
8H ? Mn2 5Fe3 4H2OA 0.598-g sample
of the iron compound requires 22.25 mL of 0.0123
M KMnO4 solution for titration to the equivalence
point. What is the mass of iron in the sample?
Strategy
  • mL and M of MnO4- to ? mol of MnO4- and Fe2
  • Coefficients are 1 and 5 for MnO4- and Fe2
    respectively

95
Fe2 and MnO4- (mole ratio is 5 to 1)
  • 0.0123 mol MnO4- 5 mol Fe2
  • 22.25 mLx x 1.37x10-3
  • 1000 mL 1 mol
    MnO4- mol Fe2

  • 55.85 g Fe
  • g of iron 1.37 x 10-3 mol Fe2 x
    0.0765

  • 1 mol Fe2 g Fe
  • Now, for the mass of iron
  • 0.0765 g Fe
  • x 100 12.8 Fe
  • 0.598 g sample

96
Normality
  • equivalents (eq) solute per liter solution
  • milliequivalents (meq) solute per mL solution
  • eq solute meq solute
  • N (calculated by dividing)
  • V(L) soln V(mL) soln
  • equivalent 1 equivalent weight
  • Equivalent Weight (EW) given in g/eq
  • acid/base the mass of a substance required to
    furnish or react with exactly 1 mol H
  • redox reactions the mass of substance able to
    gain or lose 1 mol e-

97
Equivalent weight
  • HCl
  • HCl ? H Cl
  • 1 mol HCl ? 1 mol H, ? EW MW
  • H2SO4
  • H2SO4 ? 2H SO42
  • 1 mol H2SO4 ? 2 mol H, ??EW MW/2
  • HnA (in general)
  • EW MW/n, n H in molecule of acid
  • KOH
  • KOH ? K OH
  • OH H ? H2O
  • ?, 1 mol KOH reacts with 1 mol H, ? EW FW
  • continued with polyhydroxides

98
Equivalent weight
  • Fe(OH)3
  • 1 mol Fe(OH)3 ? 3OH
  • 1 mol reacts with 3 mol H, ? EW FW/3
  • M(OH)n (in general)
  • EW FW/n, n OH in formula unit of base
  • Redox
  • 7
    0
  • MnO4 5e ? Mn2 Zn ? Zn2
    2 e
  • FW MnO4
    AW Zn
  • EW EW
  • 5
    2

99
Example Calculate the normality of barium
hydroxide in a solution made by dissolving 0.991
g of barium hydroxide in water and diluting to
100.0 mL.
  • Ba(OH)2
  • FW 171.32 g
    mg
  • EW 85.66 85.66
  • 2 2
    eq meq
  • 1 eq Ba(OH)2
  • 0.991 g Ba(OH)2 x 0.0116 eq Ba(OH)2
  • 85.66 g Ba(OH)2
  • 0.0116 eq Ba(OH)2
  • N Ba(OH)2 0.116 N Ba(OH)2
  • 0.1000 L soln

100
Example Describe the preparation of 250.0 mL of
0.100 N oxalic acid solution from the solid.
Oxalic acid is H2C2O4.
  • 1 mol oxalic acid ? 2 mol H
  • EW 1/2 MW 1/2(90.04) 45.03g/eq
  • 0.100 N indicates 0.100 eq OA/L soln
  • 0.100 eq OA
  • 0.2500 L x 0.0250 eq OA
  • 1 L soln
  • 45.03 g OA
  • 0.0250 eq OA x 1.13 g OA
  • 1 eq OA
  • Dissolve 1.13 g of oxalic acid in water and
    dilute to a total volume of 250.0 mL

101
Example What is the normality of a 0.300 M
arsenic acid solution?
  • H3AsO4

  • MW
  • 1 mol H3AsO4 ? 3 mol H EW

  • 3
  • g H3AsO4 g H3AsO4 g
    H3AsO4
  • eq 3 x 3 mol
  • EW H3AsO4 MW MW H3AsO4
    H3AsO4
  • 3
  • eq mol
  • N M Then,
  • V(L) V(L)
  • N H3AsO4 3 x M H3AsO4 3 x 0.300 0.900 N

102
CONCLUSION For an Acid HnA or a Base M(OH)n
  • N n x M
  • n H in molecule of acid or OH in formula
    unit of base

103
By definition, 1 eq of anything will react with
exactly 1 eq of anything else
  • Equivalence Point
  • The point in a titration at which
  • eq titrant eq titrate
  • meq titrant meq titrate

104
Example Calculate the concentration of
phosphoric acid in a solution given that a 25.0
mL sample of that solution required 42.2 mL of
0.274 N potassium hydroxide for titration.
  • H3PO4 3 KOH ? K3PO4 3 H2O
  • at Eq. Pt., meq H3PO4 meq KOH
  • meq H3PO4 meq KOH
  • (mL H3PO4)(N H3PO4) ( mL KOH)(N KOH)
  • (25.0 mL)(X ) (42.2 mL)(0.274 N )
  • X 0.463 N
  • Now, N 3x M, then M N/3
  • X 0.463/3 0.154 M

105
Example Calculate the oxalic acid (H2C2O4) in
a solid given that a 1.709 g sample of the solid
required 24.9 mL of 0.0998 N potassium hydroxide
for titration.
  • H2C2O4 2KOH ? K2C2O4 2H2O
  • Due to the two protons of H2C2O4 (OA),
  • EW MW/2 45.03g/eq 45.03mg/meq
  • g OA
  • OA x 100
  • g sample
  • Strategy calculate eq of NaOH that are the same
  • for OA then, calculate g of OA with eq and EW
  • of OA

106
At equivalence point,
  • eq OA eq KOH data of
    KOH soln

  • 0.0998 eq KOH
  • eq OA 0.0249 L x 0.00249 eq
  • 1 L soln
  • 45.03 g OA
  • 0.00249 eq OA x 0.112 g OA
  • 1 eq OA
  • 0.112 g OA
  • OA x 100 6.55
  • 1.709 g sample
Write a Comment
User Comments (0)
About PowerShow.com