Introduction to Diffusion MRI processing - PowerPoint PPT Presentation

1 / 41
About This Presentation
Title:

Introduction to Diffusion MRI processing

Description:

Introduction to Diffusion MRI processing The diffusion process dt_recon Required Arguments: --i invol --s subjectid --o outputdir Example: dt_recon --i dt ... – PowerPoint PPT presentation

Number of Views:584
Avg rating:3.0/5.0
Slides: 42
Provided by: LillaZ
Category:

less

Transcript and Presenter's Notes

Title: Introduction to Diffusion MRI processing


1
Introduction to Diffusion MRI processing
2
The diffusion process
http//pubs.niaaa.nih.gov/publications/arh27-2/146
-152.htm
3
dt_recon
  • Required Arguments
  • --i invol
  • --s subjectid
  • --o outputdir
  • Example dt_recon --i
  • dt_recon --i 6-1025.dcm --s M111 --o dti

4
Main processing steps
  • Eddy current and motion correction
  • (FSL eddy_correct)
  • Tensor fitting
  • tensor.nii, eigvals.nii. eigvec?.nii
  • set of scalar maps adc, fa, ra, vr, ivc
  • Registration to anatomical space
  • (bbregister to lowb)
  • Mapping mask, FA to Talairach space

5
Other Arguments (Optional)
  • --b bvals bvecs
  • --info-dump infodump.dat
  • use info dump created by unpacksdcmdir or
    dcmunpack
  • --ecref TP
  • use TP as 0-based reference time points for EC
  • --no-ec
  • turn off eddy/motion correction
  • --no-reg
  • do not register to subject or resample to
    talairach
  • --no-tal
  • do not resample FA to talairch space
  • --sd subjectsdir
  • specify subjects dir (default env SUBJECTS_DIR)
  • --eres-save
  • save resdidual error (dwires and eres)
  • --pca
  • run PCA/SVD analysis on eres (saves in pca-eres
    dir)
  • --prune_thr thr
  • set threshold for masking (default is FLT_MIN)

6
Examples of scalar maps
  • FA fractional anisotropy (fiber density, axonal
    diameter, myelination in WM)
  • RA relative anisotropy
  • VR volume ratio
  • IVC inter-voxel correlation (diffusion
    orientation agreement in neighbors)
  • ADC apparent diffusion coefficient (magnitude of
    diffusion low value ? organized tracts)
  • RD radial diffusivity
  • AD axial diffusivity

7
FA
8
ADC
9
IVC
10
Tractography examples
  • Trackvis and Diffusion Toolkit (http//www.trackvi
    s.org/)

11
(No Transcript)
12
CST on (color) FA map
13
Under developmentTRActs Constrained by
UnderLying Anatomy (TRACULA)
  • Anastasia Yendiki
  • HMS/MGH/MIT Athinoula A. Martinos Center for
    Biomedical Imaging

14
Tractography
  • Identify fiber bundles in cerebral white matter
    (WM)
  • Characterizing these WM pathways is important
    for
  • Inferring connections b/w brain regions
  • Understanding effects of neurodegenerative
    diseases, stroke, aging, development

From Gray's Anatomy IX. Neurology
15
Diffusion in brain tissue
  • Differentiate tissues based on the diffusion
    (random motion) of water molecules within them
  • Gray matter Diffusion is unrestricted ?
    isotropic
  • White matter Diffusion is restricted ?
    anisotropic

16
Diffusion MRI
Diffusion encoding in direction g1
  • Magnetic resonance imaging can provide diffusion
    encoding
  • Magnetic field strength is varied by gradients in
    different directions
  • Image intensity is attenuated depending on water
    diffusion in each direction
  • Compare with baseline images to infer on
    diffusion process

g2
g3
g4
g5
g6
No diffusion encoding
17
Deterministic vs. probabilistic
  • Determine best pathway between two brain
    regions
  • Challenges
  • Noisy, distorted images
  • Pathway crossings
  • High-dimensional space
  • Deterministic methods Model geometry of
    diffusion data, e.g., tensor/eigenvectors
    Conturo 99, Jones 99, Mori 99, Basser 00,
    Catani 02, Parker 02, ODonnell 02, Lazar 03,
    Jackowski 04, Pichon 05, Fletcher 07,
    Melonakos 07,
  • Probabilistic methods Also model statistics of
    diffusion data Behrens 03, Hagmann 03, Pajevic
    03, Jones 05, Lazar 05, Parker 05, Friman
    06, Jbabdi 07,

18
Local vs. global
  • Local Uses local information to determine next
    step, errors propagate from areas of high
    uncertainty
  • Global Integrates information along the entire
    path

19
Local tractography
  • Define a seed voxel or ROI to start the tract
    from
  • Trace the tract by small steps, determine best
    direction at each step
  • Deterministic Only one possible direction at
    each step
  • Probabilistic Many possible directions at each
    step (because of noise), some more likely than
    others

20
Some issues
  • Not constrained to a connection of the seed to a
    target region
  • How do we isolate a specific connection? We can
    set a threshold, but how?
  • What if we want a non-dominant connection? We can
    define waypoints, but theres no guarantee that
    well reach them.
  • Not symmetric between tract start and end
    point

21
Global tractography
  • Define a seed voxel or ROI
  • Define a target voxel or ROI
  • Deterministic Only one possible path
  • Probabilistic Many possible paths, find their
    probability distribution
  • Constrained to a specific connection
  • Symmetric between seed and target regions

22
Probabilistic tractography
Have set of images
Want most probable path
  • Determine the most probable path based on
  • What the images tell us about the path
  • Assume a multi-compartment model of diffusion
    Jbabdi et al., NeuroImage 07
  • What we already know about the path
  • Incorporate prior knowledge on path anatomy
    from training subjects

23
Multi-compartment model
Behrens et al., MRM 03 Jbabdi et al., NeuroImage
07
  • Multiple diffusion compartments in each voxel
  • Anisotropic compartments that model fibers (1, 2,
    )
  • One isotropic compartment that models everything
    left over (0)

1
0
2
  • We infer from the data
  • Orientation angles of anisotropic compartments
  • Volumes of all compartments
  • Overall diffusivity in the voxel
  • Multiple fibers only if they are supported by data

24
Anatomical priors for WM paths
  • WM pathways are well-constrained by surrounding
    anatomy
  • Sources of prior anatomical information
  • Shape of the path in a set of training subjects
  • Anatomical regions around the path in the
    training subjects
  • Other types of anatomical constraints often used
  • WM masks
  • Constraints on path angle
  • Constraints on path length

25
TRACULA
  • TRActs Constrained by UnderLying Anatomy
  • Global probabilistic tractography
  • Prior info on tract anatomy from training
    subjects
  • No manual intervention in new subjects
  • Robustness w.r.t. initialization and ROI
    selection
  • Anatomically plausible solutions
  • Manual labeling of paths on a set of training
    subjects, performed by an expert
  • Anatomical segmentation maps of the training
    subjects, produced by FreeSurfer

26
Preliminary results
Data courtesy of Dr. R. Gollub, MGH
  • Manual labeling of
  • Corticospinal tract (CST)
  • Superior longitudinal fasciculus (SLF) 1, 2, 3
  • Cingulum
  • DTI reliability data set from Mental Illness and
    Neuroscience Discovery (MIND) Institute
  • 10 healthy volunteers scanned twice
  • DWI 2x2x2 mm resolution, 60 gradient directions
  • T1 1x1x1 mm resolution
  • Use manual labeling of 9 subjects to obtain path
    priors and path initialization for 10th subject

27
Reliability study
Manual labeling by Allison Stevens and Cibu
Thomas Visualization tool by Ruopeng Wang
28
Test-retest reliability
No info from training subjects
With info from training subjects
Visit 1
Visit 1
Visit 2
Visit 2
29
Application Huntingtons disease
Data courtesy of Dr. D. Rosas, MGH
Healthy
Huntingtons stage 1
Huntingtons stage 3
Huntingtons stage 2
30
MD changes in patients
SLF1
SLF2
CST
SLF3
0.1
Cingulum
0.001
P-values for T-test on mean MD of Huntingtons
patients (N33) and controls (N22)
31
Correlation with disease stage
Left Left Left Left Left Right Right Right Right
CST SLF1 SLF2 SLF3 CB SLF1 SLF2 SLF3 CB
FA -.3 -.3 -.3 -.3 -.3 -.3 -.2 -.5 -.2
MD .3 .4 .7 plt10-7 .6 plt10-5 .4 .5 .7 plt10-8 .6 plt10-5 .3
RD .3 .4 .6 .5 .4 .6 .6 .6 .3
AD .3 .4 .7 .6 .4 .4 .8 .5 .3
FA Fractional anisotropy
MD Mean diffusivity
RD Radial diffusivity
AD Axial diffusivity
CST Corticospinal tract
SLF Superior longitudinal fasciculus
CB Cingulum body
32
Application Schizophrenia
Data courtesy of Dr. R. Gollub, MGH
SLF1
SLF2
CST
SLF3
0.1
Cingulum
0.001
P-values for T-test on mean RD of schizophrenia
patients (N25) and controls (N18)
33
FA and RD changes
plt.05 plt.10
Left cingulum
Right cingulum
34
Current development
  • TRACULA A method for diffusion tractography that
    combines a global probabilistic approach with
    prior knowledge on path anatomy
  • More detailed models of tracts
  • Improved inter-subject registration
  • Coming soon to a FreeSurfer near you!

35
Acknowledgements
  • Support provided in part by
  • National Center for Research Resources
  • P41 RR14075
  • R01 RR16594
  • The NCRR BIRN Morphometric Project BIRN002, U24
    RR021382
  • National Institute for Biomedical Imaging and
    Bioengineering
  • K99 EB008129
  • R01 EB001550
  • R01 EB006758
  • National Institute for Neurological Disorders and
    Stroke
  • R01 NS052585
  • Mental Illness and Neuroscience Discovery (MIND)
    Institute
  • National Alliance for Medical Image Computing
  • Funded by the NIH Roadmap for Medical Research,
    grant U54 EB005149

36
Acknowledgements
MGH/Martinos
Lilla Zöllei Allison Stevens David Salat
Bruce Fischl
Jean Augustinack
Oxford/FMRIB
Saad Jbabdi Tim Behrens
37
ONGOING Registration of tractography
  • Goal fiber bundle alignment
  • Study compare CVS to methods directly aligning
    DWI-derived scalar volumes
  • Conclusion high accuracy cross-subject
    registration based on structural MRI images can
    provide improved alignment
  • Zöllei, Stevens, Huber, Kakunoori, Fischl
    Improved Tractography Alignment Using Combined
    Volumetric and Surface Registration, accepted to
    NeuroImage

38
Mean Hausdorff distance measures for three fiber
bundles
39
Average tracts after registration mapped to the
template displayed with iso-surfaces
40
  • Stages
  • 1. Convert dicom to nifti (creates dwi.nii)
  • 2. Eddy current and motion correction using FSLs
    eddy_correct,
  • creates dwi-ec.nii. Can take 1-2 hours.
  • 3. DTI GLM Fit and tensor construction. Includes
    creation of
  • tensor.nii -- maps of the tensor (9 frames)
  • eigvals.nii -- maps of the eigenvalues
  • eigvec?.nii -- maps of the eigenvectors
  • adc.nii -- apparent diffusion coefficient
  • fa.nii -- fractional anisotropy
  • ra.nii -- relative anisotropy
  • vr.nii -- volume ratio
  • ivc.nii -- intervoxel correlation
  • lowb.nii -- Low B
  • bvals.dat -- bvalues
  • bvecs.dat -- directions
  • Also creates glm-related images
  • beta.nii - regression coefficients
  • eres.nii - residual error (log of dwi
    intensity)

41
After dt_recon
  • Check registration
  • tkregister2 --mov dti/lowb.nii --reg
    dti/register.dat \
  • --surf orig --tag
  • View FA on the subject's anat
  • tkmedit M87102113 orig.mgz -overlay dti/fa.nii \
  • -overlay-reg dti/register.dat
  • View FA on fsaverage
  • tkmedit fsaverage orig.mgz -overlay
    dti/fa-tal.nii
  • Group/Higher level GLM analysis
  • Concatenate fa from individuals into one file
  • Make sure the order agrees with the fsgd below
  • mri_concat /fa-tal.nii --o group-fa-tal.nii
  • Create a mask
  • mri_concat /mask-tal.nii --o group-masksum-tal.ni
    i --mean
  • mri_binarize --i group-masksum-tal.nii --min .999
    --o group-mask-tal.nii
  • GLM Fit
Write a Comment
User Comments (0)
About PowerShow.com