Title: Advances in Random Matrix Theory (stochastic eigenanalysis)
1Advances in Random Matrix Theory(stochastic
eigenanalysis)
- Alan Edelman
- MIT Dept of Mathematics,
- Computer Science AI Laboratories
2Stochastic Eigenanalysis
- Counterpart to stochastic differential equations
- Emphasis on applications to engineering finance
- Beautiful mathematics
- Random Matrix Theory
- Free Probability
- Raw Material from
- Physics
- Combinatorics
- Numerical Linear Algebra
- Multivariate Statistics
3Scalars, Vectors, Matrices
- Mathematics Notation power less ink!
- Computation Use those caches!
- Statistics Classical, Multivariate, ?
- Modern Random
Matrix Theory - The Stochastic Eigenproblem
- Mathematics of probabilistic
linear algebra - Emerging Computational
Algorithms - Emerging Statistical Techniques
Ideas from numerical computation that stand the
test of time are right for mathematics!
4Open Questions
- Find new applications of spacing (or other)
statistics - Cleanest derivation of Tracy-Widom?
- Finite free probability?
- Finite meets infinite
- Muirhead meets Tracy-Widom
- Software for stochastic eigen-analysis
5Wigners Semi-Circle
- The classical most famous rand eig theorem
- Let S random symmetric Gaussian
- MATLAB Arandn(n) S( AA)/2
- S known as the Hermite Ensemble
- Normalized eigenvalue histogram is a semi-circle
- Precise statements require n?? etc.
6Wigners Semi-Circle
- The classical most famous rand eig theorem
- Let S random symmetric Gaussian
- MATLAB Arandn(n) S( AA)/2
- S known as the Hermite Ensemble
- Normalized eigenvalue histogram is a semi-circle
- Precise statements require n?? etc.
n x n iid standard normals
7Wigners Semi-Circle
- The classical most famous rand eig theorem
- Let S random symmetric Gaussian
- MATLAB Arandn(n) S( AA)/2
- S known as the Hermite Ensemble
- Normalized eigenvalue histogram is a semi-circle
- Precise statements require n?? etc.
8Wigners original proof
- Compute E(tr A2p) as n?8
- Terms with too many indices, have some element
with power 1. Vanishes with mean 0. - Terms with too few indices not enough to be
relevant as n?8 - Leaves only a Catalan number left Cp(2p)/(p1)
for the moments when all is said and done - Semi-circle only distribution with Catalan number
moments
p
9Finite Versions of semicircle
10Finite Versions
Area under curve (-8,x) Can be expressed as sums
of probabilities that certain tridiagonal
determinants are positive.
11Wigners Semi-Circle
- Real Numbers x ß1
- Complex Numbers xiy ß2
- Quaternions xiyjzkw ß4
- ß2½? xiyjz ß2½?
Defined through joint eigenvalue density
const x ?xi-xjß ?exp(-xi2 /2) ßrepulsion
strength ß0 no interference spacings are
Poisson Classical research only ß1,2,4 missing
the link to Poisson, continuous techniques, etc
12Largest eigenvalue
convection-diffusion?
13Haar or not Haar?
Uniform Distribution on orthogonal
matrices Gram-Schmidt or Q,RQR(randn(n))
14Haar or not Haar?
Uniform Distribution on orthogonal
matrices Gram-Schmidt or Q,RQR(randn(n))
?
Eigenvalues Wrong
15Longest Increasing Subsequence(n4)
(Baik-Deift-Johansson) (Okounkovs proof)
Green 4 Yellow 3 Red 2 Purple 1
1 2 3 4 2 1 3 4 3 1 2 4 4 1 2 3
1 2 4 3 2 1 4 3 3 1 4 2 4 1 3 2
1 3 2 4 2 3 1 4 3 2 1 4 4 2 1 3
1 3 4 2 2 3 4 1 3 2 4 1 4 2 3 1
1 4 2 3 2 4 1 3 3 4 1 2 4 3 1 2
1 4 3 2 2 4 3 1 3 4 2 1 4 3 2 1
16Bulk spacing statistics
convection-diffusion?
- Bus wait times in Mexico
- Energy levels of heavy atoms
- Parked Cars in London
- Zeros of Riemann zeta
- Mice Brain Wave Spikes
Telltale Sign Repulsion optimality
17 whats my ß?web page
- Cys tricks
- Maximum Likelihood Estimation
- Bayesian Probability
- Kernel Density Estimation
- Epanechnikov kernel
- Confidence Intervals
http//people.csail.mit.edu/cychan/BetaEstimator.h
tml
18Open Questions
- Find new applications of spacing (or other)
distributions - Cleanest derivation of Tracy-Widom?
- Finite free probability?
- Finite meets infinite
- Muirhead meets Tracy-Widom
- Software for stochastic eigen-analysis
19Everyones Favorite Tridiagonal
-2 1
1 -2 1
1
1 -2
20Everyones Favorite Tridiagonal
-2 1
1 -2 1
1
1 -2
G
G
G
1 (ßn)1/2
21Stochastic Operator Limit
Cast of characters Dumitriu, Sutton, Rider
22Open Questions
- Find new applications of spacing (or other)
distributions - Cleanest derivation of Tracy-Widom?
- Finite free probability?
- Finite meets infinite
- Muirhead meets Tracy-Widom
- Software for stochastic eigen-analysis
23Is it really the random matrices?
- The excitement is that the random matrix
statistics are everyhwere - Random matrices properly tridiagonalized are
discretizations of stochastic differential
operators! - Eigenvalues of SDOs not as well studied
- Deep down this is what I believe is the important
mechanism in the spacings, not the random
matrices! (See Brian Sutton thesis, Brian Rider
papersconnection to Schrodinger operators) - Deep down for other statistics, though its the
matrices
24Open Questions
- Find new applications of spacing (or other)
distributions - Cleanest derivation of Tracy-Widom?
- Finite free probability?
- Finite meets infinite
- Muirhead meets Tracy-Widom
- Software for stochastic eigen-analysis
25From Stochastic Differential Operators to Sturm
Sequences
- Recent results (Rider and Ramirez) have shown
that we can recast the stochastic eigenvalue
problem as a diffusion process governed by a 1-D
Schrödinger equation - In the language of the diffusion process
- If the eigenfunction of the operator has a k
roots when shifted by ?, we know there are k
eigenvalues greater than ? - The equivalent statement in the language of Sturm
sequences is - If there are k roots (sign changes) in the
continuous limit of the Sturm sequence of a ?
shifted matrix, we know there are k eigenvalues
less than ?
26Open Questions
- Find new applications of spacing (or other)
distributions - Cleanest derivation of Tracy-Widom?
- Finite free probability?
- Finite meets infinite
- Muirhead meets Tracy-Widom
- Software for stochastic eigen-analysis
27Free Probability
- Free Probability (name refers to free algebras
meaning no strings attached) - Gets us past Gaussian ensembles and Wishart
Matrices
28The flipping coins example
- Classical Probability Coin 1 or -1 with p.5
50
50
50
50
y
x
-1 1
-1 1
xy
-2 0
2
29The flipping coins example
- Classical Probability Coin 1 or -1 with p.5
Free
50
50
50
50
eig(B)
eig(A)
-1 1
-1 1
eig(AQBQ)
-2 0
2
30From Finite to Infinite
31From Finite to Infinite
? Gaussian (m1)
32From Finite to Infinite
? Gaussian (m1)
Wiggly
33From Finite to Infinite
? Gaussian (m1)
Wiggly
Wigner?
34Semi-circle law for different betas
35Open Questions
- Find new applications of spacing (or other)
distributions - Cleanest derivation of Tracy-Widom?
- Finite free probability?
- Finite meets infinite
- Muirhead meets Tracy-Widom
- Software for stochastic eigen-analysis
36Matrix Statistics
- Many Worked out in 1950s and 1960s
- Muirhead Aspects of Multivariate Statistics
- Are two covariance matrices equal?
- Does my matrix equal this matrix?
- Is my matrix a multiple of the identity?
- Answers Require Computation of
- Hypergeometrics of Matrix Argument
- Long thought Computationally Intractible
37The special functions of multivariate statistics
- Hypergeometric Functions of Matrix Argument
- ß2 Schur Polynomials
- Other values Jack Polynomials
- Orthogonal Polynomials of Matrix Argument
- Begin with w(x) on I
- ? p?(x)p?(x) ?(x)ß ?i w(xi)dxi d??
- Jack Polynomials orthogonal for w1 on the unit
circle. Analogs of xm - Plamen Koev revolutionary computation
- Dumitrius MOPS symbolic package
38Multivariate Orthogonal PolynomialsHypergeometr
ics of Matrix Argument
- The important special functions of the 21st
century - Begin with w(x) on I
- ? p?(x)p?(x) ?(x)ß ?i w(xi)dxi d??
- Jack Polynomials orthogonal for w1 on the unit
circle. Analogs of xm
39Smallest eigenvalue statistics
Arandn(m,n) hist(min(svd(A).2))
40Multivariate Hypergeometric Functions
41Multivariate Hypergeometric Functions
42Open Questions
- Find new applications of spacing (or other)
distributions - Cleanest derivation of Tracy-Widom?
- Finite free probability?
- Finite meets infinite
- Muirhead meets Tracy-Widom
- Software for stochastic eigen-analysis
43Plamen Koevs clever idea
44Symbolic MOPS applications
Arandn(n) S(AA)/2 trace(S4)
det(S3)
45Mops (Ioana Dumitriu) Symbolic
46Random Matrix Calculator
47Encoding the semicircleThe algebraic secret
- f(x) sqrt(4-x2)/(2p)
- m(z) (-z isqrt(4-z2))/2
- L(m,z) m2zm10
- m(z) ? (x-z)-1f(x) dx Stieltjes transform
Practical encoding Polynomial L whose root m
is Stieltjes transform
48The Polynomial Method
- RMTool
- http//arxiv.org/abs/math/0601389
- The polynomial method for random matrices
- Eigenvectors as well!
49Plus
X randn(n,n) AXX m2zm10
Yrandn(n,2n) BYY zm2(2z-1)m20
AB m3(z2)m2(2z-1)m20
50Times
X randn(n,n) AXX m2zm10
Yrandn(n,2n) BYY zm2(2z-1)m20
AB m4z2-2m3zm24mz40
51Open Questions
- Find new applications of spacing (or other)
distributions - Cleanest derivation of Tracy-Widom?
- Finite free probability?
- Finite meets infinite
- Muirhead meets Tracy-Widom
- Software for stochastic eigen-analysis
52Matrix Versions of Classical Stats
Orthog Matrix MATLAB (Arandn(n)
Brandn(n))
Hermite Sym Eig eig(AA) Normal
Laguerre SVD eig(AA) Chi-squared
Jacobi GSVD gsvd(A,B) Beta
Fourier Eig U,Rqr(AiB)
53The big structure
Orthog Matrix Weight Stats
Graph Theory SymSpace
Hermite Sym Eig exp(-x2) Normal Complete Graph non-compact A,AI,AII
Laguerre SVD xae-x Chi-squared Bipartite Graph non-compact AIII,BDI,CII
Jacobi GSVD (1-x)a x (1x)ß Beta Regular Graph compact A, AI, AII, C, D, CI, D, DIII
Fourier Eig ei? compact AIII, BDI, CDI
54Summary
- Stochastic Eigenanalysis
- Emerging Techniques
- Open Problems