Context-based, Adaptive, Lossless Image Coding (CALIC) - PowerPoint PPT Presentation

About This Presentation
Title:

Context-based, Adaptive, Lossless Image Coding (CALIC)

Description:

Context-based, Adaptive, Lossless Image Coding (CALIC) Authors: Xiaolin Wu and Nasir Memon Source: IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 45, NO. 4, APRIL 1997 – PowerPoint PPT presentation

Number of Views:1481
Avg rating:3.0/5.0
Slides: 15
Provided by: gre6179
Category:

less

Transcript and Presenter's Notes

Title: Context-based, Adaptive, Lossless Image Coding (CALIC)


1
Context-based, Adaptive, Lossless Image
Coding(CALIC)
  • Authors Xiaolin Wu and Nasir Memon
  • Source IEEE TRANSACTIONS ON COMMUNICATIONS, VOL.
    45, NO. 4, APRIL 1997
  • Speaker Guu-In Chen
  • date 2000.12.14

2
Where to use lossless compression
  • medical imaging
  • remote sensing
  • print spooling
  • fax
  • document image archiving
  • last step in lossy image compression system
  • .

3
Some methods for lossless compression
  • Run Length encoding
  • statistical method
  • Huffman coding
  • Arithmetic coding...
  • dictionary-based model
  • LZW UNIX compress, GIF,V.42 bis
  • PKZIP
  • ARJ...
  • predictive coding
  • DCPM
  • LJPEG
  • CALIC
  • JPEG-LS(LOCO-I)
  • FELICS...
  • wavelet transform
  • SP

4
System Overview
Raster scan original image, pixel value I
Context-based prediction,error e
grouping and predictionmodification modified
prediction ,error
Encode using arithmetic coding
5
Prediction
dh gradient in horizontal directionvertical
edge dv gradient in vertical directionhorizonta
l edge ddv- dh
6
Prediction--continued
more realistic example(inclined edge)
Prediction error
Example above, If I100 then e100-7525
7
How to improve the error distribution
Context 1. texture pattern gtCN,W,NW,NE,NN,WW,2N
-NN,2W-WW 2. Variability gtdh, dv
Influence
Error distribution
Group pixels
Previous prediction error gt
Each group has its new prediction
why?
8
Grouping
Context 1. texture pattern gtCN,W,NW,NE,NN,WW,2N
-NN,2W-WW x0,x1,x2,x3,x4, x5, x6 , x7
bk 0 if xkgt 1 if xklt ab7b6..b0
75 C100, 100, 200,100,200,200,0,0 b07
0 0 0 0 0 0 1 1 a1100000 2
9
What means 2N-NN,2W-WW
CN,W,NW,NE,NN,WW,2N-NN,2W-WW
How many cases in a
There are not (b0, b4, b6 ) (1,0,0 )
and(0,1,1) 23-26 cases. Same as (b1, b5, b7 ).
a has 664144 cases not 28
10
Grouping--continued
Context 1. texture pattern gtCN,W,NW,NE,NN,WW,2N
-NN,2W-WW 2. Variability gtdh, dv
Previous prediction error
? dhdv 2 quantize ? to 0,3 ? 0
15 42 85
Quantization Q(?) 0 1
2 3 Q(?) expressed by binary number
(?) for example, ?70, Q(?) 2, ?102
11
Grouping--continued
Compound ? and ? gtC(?, ?) for example,
?11000000 ?10
C(?, ?)1100000010
cases in C(?, ?) 1444576
According to different C(?, ?) , we group the
pixels.
12
Modify prediction
For each C(?, ?) group mean of all e modified
prediction modified error
Example I10, 11, 13, 15, 18 8, 10, 13, 16,
14 e 2, 1, 0, -1, 4 9, 11, 14, 17,
15 1, 0, -1, -2, 3 more closer
to I
13
Experimental result
14
comment
1. Balances bit rate and complexity. 2. Seems
there are redundancies in CN,W,NW,NE,NN,WW,2N-N
N,2W-WW ? dhdv 2 or may be
simplified. 3. Needs more understanding of
Arithmetic coding. 4. Lossless or near-lossless
compression can be the another fields for our
laboratory.
Write a Comment
User Comments (0)
About PowerShow.com