Title: Materiale electrotehnice noi
1Materiale electrotehnice noi
2Structura disciplinei
Capitolul Continutul
1 Fenomene in materialele electrotehnice 1.1. Conductia electrica 1.2. Polarizarea electrica 1.3. Magnetizarea materialelor 1.4. Pierderi in materialele electrotehnice
2 Materiale conductoare noi 2.1. Materiale conductoare clasice 2.2. Materiale supraconductoare 2.3. Conductori organici si nanotuburi de carbon 2.4. Materiale pentru realizarea de memristori 2.5. Aplicatii moderne ale materialelor conductoare
3 Materiale semiconductoare noi 3.1. Materiale semiconductoare clasice 3.2. Polimeri semiconductori 3.3. Materiale semiconductoare nanostructurate 3.4. Aplicatii moderne (celule solare, microprocesoare de inalta frecventa, ecrane TV, laseri)
4 Materiale dielectrice noi 4.1. Evolutia materialelor dielectrice 4.2. Straturi subtiri 4.3. Nanodielectrici 4.4. Oxizi metalici 4.5. Aplicatii
5 Materiale magnetice noi 5.1. Evolutia materialelor magnetice 5.2. Materiale magnetice amorfe 5.3. Materiale magnetice nanostructurate (nanocristaline, organice) 5.4. Fire si filme subtiri din materiale magnetice 5.5. Aplicatii moderne (miezuri magnetice, memorii, hard-discuri, carduri magnetice)
3Nanodielectrici
- Polymer nanocomposites as dielectrics
- Characterisation nanostructure, electrical
mecanical properties, thermal stability - Numerical modeling of nanodielectrics
- Possible applications of polymer nanocomposites
in Electrical Engineering
4Nanodielectrici
- Polymer nanocomposites as dielectrics
- Characterisation nanostructure, electrical
mecanical properties, thermal stability - Numerical modeling of nanodielectrics
- Possible applications of polymer nanocomposites
in Electrical Engineering
5- 1994 Symbolic birth of Nanodielectrics
- John Lewis published the paper Nanometric
Dielectrics in - IEEE Transactions on Dielectrics and Electrical
Insulation -
- Nanodielectrics Polymer nanocomposites with
dielectric properties - polymers (PA, PE, PP, PVC, epoxy resins,
silicone rubbers) -
- nano-fillers (LS, SiO2, TiO2, Al2O3)
- 1 to 100 nm in size,
- 1 to 10 wt in content
- homogeneously dispersed in the polymer
matrix. - 2002 First experimental data on nanometric
dielectrics. - 2002-2008 Articles in the field reported that
- nano-filler addition has the potential of
improving the electrical, mechanical and thermal
properties as compared to the neat polymers - polymer nanocomposites are increasingly
desirable as coatings, structural and packaging
materials in automobile, civil, aerospace and
electrical engineering. - 2006-2008 Project CEEX- PoNaDIP
6Steps of the research
Characterization
Design Realizing
Structure-Property Relationship
Modeling
7 Design realizing
- Research at UPB-ELMAT
- 14 combinations polymer nanofiller
- Plane samples 10 X 10 cm2, thickness 1 mm
- Nanofillers1 to 100 nm in size, 1 to 10 wt in
content, and homogeneously dispersed in the
polymer matrix
POLYMER thermoplastic thermoset
NANOFILLER organic inorganic
8 Design realizing
- Nanocomposites investigated
- PP, PVC and LDPE with SiO2 nanoparticles of 15 nm
diameter - PP, PVC and LDPE with TiO2 nanoparticles of 15 nm
diameter - PP, PVC and LDPE with Al2O3 nanoparticles of 40
nm diameter - nanofillers content 2, 5 and 10 wt.
- Manufacturing by direct mixing method
- Samples for electrical tests plaques of square
shape (10 x 10 cm2) having the thickness of 0.5
mm.
Installation for nanocomposite manufacturing
9Nanodielectrici
- Polymer nanocomposites as dielectrics
- Characterisation nanostructure, electrical
mecanical properties, thermal stability - Numerical modeling of nanodielectrics
- Possible applications of polymer nanocomposites
in Electrical Engineering
10Nanostructure SEM at ICECHIM
Characterization
LDPE - SiO2
11- Electrical properties
- Dielectric Spectroscopy at UPB/ELMAT
- real part of the permittivity ( )
- loss tangent (tan d)
- dielectric spectroscopy Novocontrol ALPHA-A
Analyzer (3) in combination with an Active Sample
Cell ZGS (4) and a Temperature Control System
Novotherm (5) - frequency range 10-3 106 Hz
Characterization
12Electrical properties Dielectric Spectroscopy at
UPB/ELMAT
Results for PP nanocomposites with Al2O3, SiO2
and TiO2 fillers at T 300 K
13Electrical properties Dielectric Spectroscopy at
UPB/ELMAT
Results for PVC nanocomposites with Al2O3, SiO2
and TiO2 fillers at T 300 K
14Electrical properties Dielectric Spectroscopy at
UPB/ELMAT
Results for LDPE nanocomposites with Al2O3, SiO2
and TiO2 fillers at T 300 K
15Electrical properties Dielectric Spectroscopy at
UPB/ELMAT
Results for LDPE - Al2O3 nanocomposites, for
different filler concentration, at T 300 K
16- Electrical properties
- Absorption-Resorption Currents at UPB/ELMAT
- Resistivity
- Keithley 6517 Electrometer in combination
Keithley 8009 Test Fixture
Characterization
17Electrical properties Absorption-Resorption
Currents at UPB/ELMAT
Characterization
18 Characterization
Electrical properties Resistivity of LDPE
nanocomposites at UPB/ELMAT
Material Relative volume resistivity at 10 V Relative volume reisistivity at 500 V
Unfilled LDPE 1 1
LDPE with 5 wt nano-SiO2 39.39 0.54
LDPE with 5 wt nano-Al2O3 6.08 0.19
LDPE with 5 wt nano-TiO2 4.09 0.72
19- Mechanical properties at ICECHIM
- LDPE SiO2 and LDPE Al2O3 nanocomposites
- According to ISO 527 on specimens type IB (5
specimens for each test) with 50 mm/min for
tensile strength and 2 mm/min for modulus of
elasticity.
Characterization
20Nanodielectrici
- Polymer nanocomposites as dielectrics
- Characterisation nanostructure, electrical
mecanical properties, thermal stability - Numerical modeling of nanodielectrics
- Possible applications of polymer nanocomposites
in Electrical Engineering
21 Ideas multi-core model
(Tanaka)
Numerical model at UPB/ELMAT
Modeling
22Numerical model at UPB/ELMAT
3D Model
- Sample features
- thickness 1 mm
- diameter of the nanoparticle 40 nm
- thickness
if the interface 10 nm
- filler content 5
- relative
permittivities
- nanoparticle/interface/matrix 10/6/2.2
Modeling
interface
23Numerical model at UPB/ELMAT
Electrostatic field
div (e grad V) 0
V electric scalar potential e electric
permittivity
Modeling
24Numerical model at UPB/ELMAT
Computational domain in FLUX 3D
- Main data of the numerical model
- dimension of the elementary cube 120 nm along
each axis
- nanoparticle diameter 40 nm - - thickness of the interface 10 nm
- concentration
of nanoparticles 5 - - relative electric permittivities
- nanoparticle/interface/matrix 10/6/2.2
- applied voltage 0.02 V
Modeling
25Numerical model at UPB/ELMAT
Descretization mesh - finite element method
- Size of the mesh
- 6784 nodes
- 41770 volume finite elements - - tethrahedral elements
Modeling
26Numerical model at UPB/ELMAT
Computation of the equivalent permittivity
1) Computation of the electric energy stored in
the material samples
2) Computation of the capacitance
of the elementar capacitor by using two different
methods 3) Evaluation of the equivalent rel.
electric permittivity er eq
Modeling
27Numerical model at UPB/ELMAT
Numerical resultsElectric scalar potential
color map
Modeling
Without nanoparticles With
nanoparticles
28Numerical model at UPB/ELMAT
Numerical resultsElectric field strength color
map
Without nanoparticles With
nanoparticles
Modeling
29Numerical model at UPB/ELMAT
Parametric study
- filler content fc
- diameter of the nanoparticle dn
- thickness of the interface ti
- relative permittivity of the polymer matrix erm
- relative permittivity of the interface eri
- relative permittivity of the nanofiller ern
Modeling
30Numerical model at UPB/ELMAT
Numerical resultsequivalent permittivity vs.
interface permittivity
ere f(eri) fc 5 dn 40 nm ti 10 nm erm
2.2 ern 10 eri 3 4 5 6 7 8
Modeling
31Numerical model at UPB/ELMAT
Numerical resultsequivalent permittivity vs. the
thickness of the interface layer
ere f(ti) fc 5 dn 40 nm ti 5 10
15 20 nm rvi 0 erm 2.2 ern 10 eri 4
Modeling
32Numerical model at UPB/ELMAT
Numerical resultsequivalent permittivity vs. the
diameter ofthe nanoparticle
ere f(dn) fc 5 dn 10 20 30 40 50
nm ti 10 nm erm 2.2 ern 10 eri 4
Modeling
33Numerical model at UPB/ELMAT
Numerical resultsequivalent permittivity vs.
nanoparticle permittivity
ere f(ern) fc 5 dn 40 nm ti 10 nm erm
2.2 ern 4 10 eri 2.2
Modeling
34Numerical model at UPB/ELMAT
Particle agglomeration
Modeling
35Numerical model at UPB/ELMAT
Particle agglomeration isolated particles
Modeling
36Nanodielectrici
- Polymer nanocomposites as dielectrics
- Characterisation nanostructure, electrical
mecanical properties, thermal stability - Numerical modeling of nanodielectrics
- Possible applications of polymer nanocomposites
in Electrical Engineering
37- Nanocomposite applications in Electrical
engineering at ETN-EE - Manufacturing and testing of coil holders
- Selected materials LDPE Al2O3 and LDPE SiO2
with 2 filler content. - Coil holders made from selected nanocomposites
have better behaviour as compared with those from
the neat polymer (dielectric strength, mecanical
properties and, obviously, flame retardancy) -