Title: Support Vector Regression
1??? ???????
2??(1/1)
- ? ?
- ??
- ???????????
- ?????
- ???
- ?????????
- ?????????
- ??????????????
- Support Vector Regression
- ????
31 ??(1/13)
- 1 ??
- ??????????????????????,??????????????????,????????
. - ??????????????????????,???????????????,???????????
? - ??????,???????????,??????????,??????????????,?????
???????????????????????? - ???????????(??)???
41 ??(2/13)
- ????????????,???????(???)?????????,???????????????
????,?????????????? - ??????,????(??)??,??????????????,?????????????,???
?????????????????? - ??,???,???????????????
- ????,?????????????????????,???????????????
- ???(??)??????
- ???????,?ANN
- ??????
51 ??(3/13)
- A. ???????(??)??????.
- ???????NN???,???????????????????????.
- ??????????????,??????,???????(????)????,??????????
??. - ???????????,
- ??,???????????,?????????.
- ??,????????????????????????,????????????????.
- ???????????????????.
61 ??(4/13)
- ???????,?????????,????????
- ??????????????,???????????????????????,???????????
??????????(???????)??? - ?????????,???????????????????,????????????????????
???,????????????? - ??,????????????????ANN??????????????.
71 ??(5/13)
- B. ???????,?ANN.
- ?????????????????,??????????????.
- ??,???????????????.
- C. ??????.
- ??????????????????????,?????????????????
- ??,????????????(??????????)????????,??????????????
????? - ???????????????,???????????????,?????????
81 ??(6/13)
- ??????(Statistical Learning Theory, SLT)
???V.Vapnik?60??????????????????,?70??????????????
?,???????????????,????????
- ?90????,?????????????,???NN????????????????,??????
??????.
91 ??(7/13)
- SLT???????????????????
- ????????????
- ???????VC?,???????????????????????VC?
- SLT????????,?????????????????????,??????????,?????
???,??1992??????????(Support Vector Machine, SVM)
???????????????????????. - ?????SLT??????????????????????????????,???????????
??SVM????????????????,?????????????20????????????
101 ??(8/13)
- SVM????SLT???????????????,??SLT??????,????????.
- ??( Cristianini Shawe-Taylor ,2000 ) Support
Vector Machines are a system for efficiently
training linear learning machines in
kernel-induced feature spaces, while respecting
the insights of generalisation theory and
exploiting optimisation theory. - SVM becomes popular because of its success in
handwritten digit recognition - 1.1 test error rate for SVM. This is the same as
the error rates of a carefully constructed neural
network, LeNet 4.
111 ??(9/13)
- ??,SVM????????????????????????????.
- ??,???????,??????????,????????????????????,SVM????
????????????????????. - SVM is now regarded as an important example of
kernel methods, arguably the hottest area in
machine learning.
121 ??(10/13)
- SVMs combine three important ideas
- Apply optimization algorithms from Operations
Reseach - Linear Programming and Quadratic Programming
- Implicit feature transformation using kernels
Implicit feature transformation using kernels - Control of overfitting by maximizing the margin
131 ??(11/13)
- ??,?SVM?????????????,??????????.??
- ???????????????,???????????
- ??SVM?????????????(????????????????SVM??????????)
- ????????????VC????????????
- SVM???????????????????????????.
141 ??(12/13)
- ??,?????????,??SLT?SVM???,???????80????ANN????????
???? - ??,?????,SLT????????????????(????ANN?????????),???
??????????????????. - ??,??????,SLT?????????????,???????????????????????
????
151 ??(13/13)
- ??????SVM,?????
- ???????????
- ?????
- ???
- ?????????
- SVM??????????
162 SLT?????(1/4)
- 2 ???????????
- ????????,??????(SLT)??????????????????????.
- ???????????????????????,??????????????????????????
,?????????????????????. - V. Vapnik???????????????????,???????,?????????????
,???NN????????????????,SLT????????????.
172 SLT?????(2/4)
- SLT??????
- ?????????????????????????????
- ???????????????,??????????????
- ?????????????????????
- ????????,??????????????????
- SVM??,????????????????????
182 SLT?????(3/4)
- SLT?????????VC?(VC Dimension)??,??????????????????
?????????????,????????????????????????????????????
????. - SLT?????????????????,?????????????????????.
- ?????????????,?????????????????(??NN??????????????
?) - ??,????????????????????--SVM,?????????????????.
192 SLT?????(4/4)
- ??????,SLT?SVM?????NN??????????,??????????????????
?. - ????SLT?????,?????
- ????
- ???????????
- ??????????
- VC????
- ??????????
202.1 ????(1/3)
- 2.1 ????
- ??????????????????????????????.
- ??????????????y?x???????????,????????????F(x,y).
- ??????????n??????????
- x1, y1, x2, y2, , xn, yn
- ?????f(x,w)?,???????f(x,w0)?????????,??????????
212.1 ????(2/3)
- ??w????????
- f(x,w)???????,????????????.
- L(y,f(x,w))????f(x,w)?y??????????,????????,L(y,f(x
,w))??????
222.1 ????(3/3)
- ????????????????F(x,y),?????????,???????????????,?
?????????
- ????????????????,???????,???R(w)???.
232.2 ???????????(1/2)
- 2.2 ???????????
- ???????????????,??????????????????????????,???????
?????. - ?? ???????L(y,w)???????F(y),??????????????????,??
??????????
242.2 ???????????(2/2)
- ???????????????????,?????????????L(y,wl),l1,2,,?
????????????????????????. - ????????????????????,
252.3 ??????????(1/3)
- 2.3 ??????????
- SLT????? ??????????????????????????,??????.
- ???,???????????????????????,??????
- ????Remp(w) ?????R(w)?????1-??????????
??n????, h?????VC?.
262.3 ??????????(2/3)
- ????,???????????????
- ???????,
- ?????????(VC confidence).
- ??????????????????????,?????????????,???????VC?h??
????l??. - ???????????
???(h,l)??h?????.
272.3 ??????????(3/3)
- ??,?????????,??????????,VC???,???????,????????????
??????????. - ??????,??VC???????,?????????.
282.4 VC????(1/7)
- 2.4 VC????
- Anthony?VC????
- ?F????n????X???0,1????,?F?VC??X???E??????,??E??
- ????S?E,?????fs?F,???x?S?fs(x)1, x?S?x?E?fs(x)
0. - VC???????F??????,???????,?????????,???????????????
?????F????????????????. - ??????,???????????,???????VC?????????VC?.
292.4 VC????(2/7)
- ????????????VC??????.
- ????(dichotomy)???
- A dichotomy of a set S is a partition of S into
two disjoint subsets. - ??(shatter)???
- A set of instances S is shattered by hypothesis
space H if and only if for every dichotomy of S
there exists some hypothesis in H consistent with
this dichotomy.
302.4 VC????(3/7)
- VC????
- ????????,??????h????????????????????2h?????,??????
??h?????. - ????VC??????????????h.
- ???????????????????,?????VC??????.
- ??????VC???????????????????????.
312.4 VC????(4/7)
- ??,??2???????????
- yw0w1x1w2x2
- ??????????(??)???????3,?????.
322.4 VC????(5/7)
- ????,??n???????????
- yw0w1x1wnxn
- ?VC??n1.
332.4 VC????(6/7)
- ??,?????,2???????????????????(??)???????4.
342.4 VC????(7/7)
- VC????????????.
- ????,VC???????????,????????.
- ??????????????VC??????,????????????????.
- ??
- ?n??????????????????VC??n1,
- ?f(x,a)sin(ax)?VC??????.
- ??????????????VC????SLT?????????,
352.5 ??????????(1/4)
- 2.5 ??????????
- ???NN???,????????????????????,?????,??????????????
????????. - ?????,??????????,???????,???????????.
- ???????,??????????????,???????,???????????????????
?. - ???????????????????????.
362.5 ??????????(2/4)
- ??????BP?????????????????.
- ??????,?????????????????.
- ???,????????????????????????,??????????????.
- ????BP???????????(???,??,???).
- ??????????,?BP???????,????50?,???????????????????
??,??????. - ???????
372.5 ??????????(3/4)
- ???????,??????????,????????,???????5????????????,?
????????????????????????????.?????????? - ????(???????)??????????????,???????.
- ???????????(????????),???????????????.
382.5 ??????????(4/4)
- ?????????,???????????.
- ??,????????????,?????????????(???????)
- ?????????????????,?????????????????????????????.
- ??,????????,?????????????????????????,????????????
????,??????????.
393 SVM(1/3)
- 3 ?????
- SVM??????SLT?VC????????????????,??????????
- ??????(?????????????)?
- ????(??????????????)
- ????????,???????????.
- SVM??????????
- ?????????????,?????????????????????????????????
403 SVM(2/3)
- ??????????????????,?????,??????????,????NN????????
?????? - ????????????????????????,?????????????????????????
????. - ??????????????????????????,?????????????,?????????
????. - ?SVM???,???????????,??????????????????RBF?????????
??????????.
413 SVM(3/3)
- ??????SVM,?????
- ?????SVM
- ??????SVM
423.1 ?????SVM(1/4)
- 3.1 ?????SVM
- ?????????????
- ?n????m?????(x1,y1), (x2,y2) (xm,ym),
- ??xi?n????????
- yi?-1,1????????.???-1??I?,?1??II?.
- ?????n???????????
- f(x)wTx-b0
- ????????
433.1 ?????SVM(2/4)
- ???????,????????????,??????????.
- ?????,?????????,???????????????????BP??RBF??,?????
?? - ??????????????????????,
- ????????,????????
- ???????,???????????
- ???????,????????
- ???BP??RBF???,????????????
443.1 ?????SVM(3/4)
BP
RBF
453.1 ?????SVM(4/4)
- ?????????????????,??????????????????.
- ???????.
- ?????,???????????.
- ??,???????,????,?????????????????.
- ????SLT,??????????????????,???SVM.
- ?????SVM
- ??????? SVM
463.1 ?????SVM--?????SVM(1/5)
- A. ?????SVM
- ??SLT,??????????????????,???SVM.
- SVM????????????
- ?n????m?????(x1,y1), (x2,y2) (xm,ym),
- ?????n????????
- ??????(????)
- ??????(????)
- ??????
- f(x)wTx-b0
473.1 ?????SVM --?????SVM(2/5)
- ?????????,????????,??????????????????????,????????
??????????. - ????????(b)????(a)?(c)??????,?????????????????????
??????.
(c)
(a)
(b)
483.1 ?????SVM --?????SVM(3/5)
- ?????????????????????.?????,
- ????????????
- r(wTxb)/w
- ??,???????????
??????????????? r1/w
493.1 ?????SVM --?????SVM(4/5)
- ??,SVM???????????????????????
????????
- SVM???????????????,????????,????????????,?????????
??.
503.1 ?????SVM --?????SVM(5/5)
- After learning both RBFN and BP decision surfaces
might not be at the optimal position. - For example, as shown in the figure, both
learning rules will not perform further
iterations (learning) since the error criterion
is satisfied
513.1 ?????SVM ???????SVM(1/16)
- B. ???????SVM
- ????????,?????????????
- ????.
- ?????????????????,????????????????.
- ????????????,???????????
523.1 ?????SVM ???????SVM(2/16)
533.1 ?????SVM ???????SVM(3/16)
- ??,??????,?????????????.
- ??,???????????????,??????????????.
- ???,???????????????????????????.
- ???????????????????????????
543.1 ?????SVM ???????SVM(4/16)
553.1 ?????SVM ???????SVM(5/16)
- ??????????????????????i,??????????
????????
??,SVM???????????????????
563.1 ?????SVM ???????SVM(6/16)
- ??Parameter C is tradeoff parameter between error
and margin and can be viewed as a way to control
overfitting. - C??,???????,??????????????,???????,?????
- ??????????????????????The Soft Margin Hyperplane
incorporating slack variables?
573.1 ?????SVM ???????SVM(6/16)
??????C1?104???????
583.1 ?????SVM ???????SVM(7/16)
- ?????????????,???????????.
- ??????????
- ???i??i???????,??
- ?i, ?i?0
- ??????????Kuhn-Tucker??,?
593.1 ?????SVM ???????SVM(8/16)
603.1 ?????SVM ???????SVM(9/16)
613.1 ?????SVM ???????SVM(10/16)
- ??w,b,?i, ?i????i???,????????i.
- ??,SVM??????????????????
????????
623.1 ?????SVM ???????SVM(11/16)
- In practice, solving the optimization problem
involved computing the inner products xiTxj
between all training points! - SVM??????????????????????????????????,?????.
- ????,????????(??????)?i???,???????????.
- ????(?i???)??????(?i??)??????
633.1 ?????SVM ???????SVM(12/16)
643.1 ?????SVM ???????SVM(13/16)
- ????????????????.
- b?????,??????????(??(1)????)??,??????????????????
?. - Notice that ???? relies on an inner product
between the test point x and the support vectors
(learning sample)xi ?
653.1 ?????SVM ???????SVM(14/16)
- Characteristics of the Solution of SVM are
- Many of the ai are zero
- w is a linear combination of a small number of
data - Sparse representation
- xi with non-zero ai are called support vectors
(SV) - The decision boundary is determined only by the
SV - Let tj (j1, ..., s) be the indices of the s
support vectors. We can write
663.1 ?????SVM ???????SVM(15/16)
- For testing with a new data z
- Compute the classifying function
- and classify z as class 1 if the sum is positive,
and class 2 otherwise - There are theoretical upper bounds on the error
on unseen data for SVM - The larger the margin, the smaller the bound
- The smaller the number of SV, the smaller the
bound
673.1 ?????SVM ???????SVM(16/16)
- Note that in both training and testing, the data
are referenced only as inner product, xi ? xj - This is important for generalizing to the
non-linear case
683.2 ??????SVM(1/12)
- 3.2 ??????SVM
- ???????????????????,?????????????????????.
- ???,?????????????????????
- ????????????????.
- ??????2???.
693.2 ??????SVM(2/12)
- ????????,?????x???????????H,??H????????.
703.2 ??????SVM(3/12)
- ??????????????????????????,?????
- ??(Cover's theorem) A complex pattern-classificat
ion problem cast in a high-dimensional space
nonlinearly is more likely to be linearly
separable than in a low-dimensional space. - A binary classification is ?-separable if there
is an m-dimensional function vector ? that cast
the inputs into a m-dimensional space, - where the classification is linearly separable by
the hyperplane wT?(x) 0, where w is the weight
vector associated to an output neuron.
713.2 ??????SVM(4/12)
- This hyperplane is called the separation surface
of the network. - A corollary of Cover's theorem
- Corollary In a space of dimensionality of m, the
expected maximum number of randomly assigned
vectors that are linearly separable is 2m.
723.2 ??????SVM(5/12)
- ????
- ?(x) Rn?H
- ???x???????H??????.
- ??????(x)??????x,??????????????????????????????
???????????????
733.2 ??????SVM(6/12)
- ???????,????????????????x??????(x)?????,??????????
????(x). - ??,???,????????H??????????(x)????,????????????????
?????,????????????(x)???. - ??????,???????K(xi,xj)?T(xi)?(xj)??Mercer??,?????
???????. - ??,?????????????????????????????????,???????????.
- ??????????????????????SVM.
743.2 ??????SVM(7/12)
- SVM??????????????????????????
- ????????,????????????????,??????????
- ????????????(???????????),??????????.
- ??,????????????????????????.
- SVM????????????NN,???s?????????,??????????????,???
??.
753.2 ??????SVM(8/12)
763.2 ??????SVM(9/12)
- ?????K(xi,xj),?????SVM????????????????????
- ??,??????SVM?????????????.
- In practical use of SVM, only the kernel function
(and not f(.)) is specified. - ????????????????????.
773.2 ??????SVM(10/12)
??????Lagrange??????
783.2 ??????SVM(11/12)
- ?i (?i ? C ) 0 ? i
- ??,????????????
- ??i0, ??i?0, ?i0 ? (Fi?bi)yi?0
- ?0lt?iltC, ??i0, ?i0 ? (Fi?bi)yi0
- ??iC, ??i0, ?i?0 ? (Fi?bi)yi?0
- ??KKT??????????????,????????????????????KKT???????
????.
793.2 ??????SVM(12/12)
- Steps for Classification with SVM
- Prepare the pattern matrix
- Select the kernel function to use
- Select the parameter of the kernel function and
the value of C - You can use the values suggested by the SVM
software, or you can set apart a validation set
to determine the values of the parameter - Execute the training algorithm and obtain the ai
- Unseen data can be classified using the ai and
the support vectors
804 ???(1/8)
- 4 ???
- ??????,SVM???????????????????????????????,????????
??????,????????????????????. - K(xi,xj)?T(xi)?(xj)????SVM?????????????
- 1. Must be symmetric
- K(xi,xj)K(xj,xi)
- 2. Must satisfy Cauchy-Schwarz inequality
- K2(xi,xj)?K(xi,xi)K(xj,xj)
814 ???(2/8)
- must be positive semi-definite,
- ??????,?????????
K(xi,xj)exp-xi-xj2/?2 K(xi,xj)fT(xi)f(xj)
K(xi,xj)K1(xi,xj)K2(xi,xj) K(xi,xj)?K1(xi,xj)
?gt0
824 ???(3/8)
- K(xi,xj)expK1(xi,xj)
- K(xi,xj)K1(xi,xj)K2(xi,xj)
- ???????
- ??????
- K(x,xi)xTxi
- ??????
- K(x,xi)(xTxi1)d
- ?????d???????
834 ???(4/8)
- ?????
- K(x,xi)exp-x-xi2/?2
- ?????????????
- ??kr(x-xi) ????????????x-xi.
- ?????,?????sigmoid??
- K(x,xi)tanh(b1xTxib2)
- ????????????
844 ???(5/8)
- ?????
- ??1999?Amari?Wu?????????????,??????????????????,??
?????????. - ????????,??????????K(xi,xj)???????????(x).
- ???,?????????,????????????.
- ?2???????? K(x,xi)(xTxi1)2 ,?????????????(x)?
854 ???(6/8)
- ???,Mercer????????K(xi,xj)???????????(x)????.
- ??( Mercer??). ???L2???????K(x,z)??????
???k(x)????????,?????????????0?L2??f(x),????
864 ???(7/8)
- ???K(xi,xj)???????????????????????.
- Kernel function can be thought of as a similarity
measure between the input objects - However, not all similarity measure can be used
as kernel function. - The kernel function needs to satisfy the Mercer
function, i.e., the function is
positive-definite - This has the consequence that the kernel matrix,
where the (i,j)-th entry is the K(xi, xj), is
always positive definite
874 ???(8/8)
- Note that xi needs not be vectorial for the
kernel function to exist. - This opens up enormous opportunities for
classification with sequences, graphs, etc., by
SVM
885 SVM????(1/3)
- 5 SVM????
- ??SVM????????????????????????????????,???,????SVM?
????,?????????????????,???????. - ??SVM?????????????????????,????????????????,??
- ????????
- ???????????
- ????????
- ??.
895 SVM????(2/3)
- ????????????????????????????????????
- ??,SVM??????????????,?????????,???????.
- ??,????????4000?,???????K(xi,xj)????128???.
- ??,SVM???????????????????,?????,????????????????.
905 SVM????(3/3)
- SVM????????????????????,??????????????????????????
????. - ???????????????????
- ????????????,????????,?????????,???????????????.
- ???????????????,???????
- ???
- ??????????
- ????????
- ??????
915 SVM????--???(1/2)
- A. ???
- ??????????(chunking algorithm).
- ?????????????,???Lagrange???????????????????.
- ??????????,?????????????,??????????????,??????????
?(?Lagrange??)??. - ???????????,???????????????????????????.
925 SVM????--???(2/2)
- ??????
- ??????????????????,??????????,
- ???????????????,????????(??????KKT??)???(???????)?
??????????????????????,??????. - ??????????????.
- ???????????????????,???????????????.
- ??,???????????????,???????????,???????????,???????
????.
935 SVM????--??????????(1/5)
- B. ??????????
- ???????????????????????
- ???????????????????????,????????????????????????
??????????????, - ???????????????????,????????????,????????????????.
945 SVM????--??????????(2/5)
- ?????????????????????
- ???????????????????????,
- ???????????????????????,???????????????,??????????
??Lagrange?????????????,????????????0. - ??????????????????????????(??????????????).
- ??,???????????????????????????????????????????.
955 SVM????--??????????(3/5)
- ??????????????Osuna?????,?????????????.??????
- ??????????B?N,??B????????????SVM??,??N??????Lagran
ge??????. - ??,?????B???Lagrange???????i(??i
0,i?B)???N????j(??i0,j?N)??,???????????????(????
?????) - ??,??????????
- (Fi?bi)yi?0
- ?,?????????????.
965 SVM????--??????????(4/5)
- ??????????????
- ????B,?????
- ????????i,i?B?b,???j0,j?N
- ??Fj,j?N?????????
- (Fi?bi)yi?0
- ???j,?B????i0???i??,???????.
- Osuna???????????????,?????????????????????????.
975 SVM????--??????????(5/5)
- ??????, Osuna??????B???????.
- ????????????????,??????B???,?????????.
- ?????????????B??,????,???????????.
- ????????B????????????,?????????B??????,????????.
985 SVM????--??????(1/5)
- C. ??????
- ????,???????????????????????????.
- Joachims???????????????????????????.
- ??John C. Platt????????(Sequential Minimal
Optimization, SMO)??. - ????????????????--????.
- ??????????????????????????????Lagrange??????.
995 SVM????--??????(2/5)
- ????????,???????????????????????,?????????????????
??????????????. - ??,???????????????????
- ??,Platt??????????????????????????,???????????????
????. - ????????????,SMO?????????????.
1005 SVM????--??????(3/5)
- ?????????????????,SMO????????????2,???????????????
?. - ??SMO???????????????????,????????????.
- ??,SMO????????????????????,??,SMO???????.
1015 SVM????--??????(4/5)
- SMO??????????????,??????????.
- SMO??????????b?,?????????????(?????0lt?iltC???,?????
?????),??SMO???????????????????? - ??,?????????b????????????????????,???b????????????
?,????????????????????KKT?????,???????????.
1025 SVM????--??????(5/5)
- ????????????????????????.
- ?????????????????????,???????????,??????????????,
- ??,???????????????????????,?????????????????????.
- Freitas???????????????????.
1035 SVM????--??????(1/9)
- D. ??????
- ????SVM??????????,??????????????????.
- ???????.
- ??????????????????????,???SVM?????????.
- ?SVM????,??????,SVM?????????????,?????????????.
- ??, ???????SVM???????????? ??????
.
1045 SVM????--??????(2/9)
- ??????,???C?i??w?????,?????????????????????yi/C,??
???????????????,??????????????,???????????????????
???.
- ??????? (Successive Over Relaxation, SOR)
????????????b2,????????????
,??????????????.
- ????????????????????????,??????.
- ??????????,?????Lagrange???????,?????????????,????
?????.
1055 SVM????--??????(3/9)
- ????(????,Least Squares,LS)SVM?LS?????SVM?,??????
?????
- ?????Lagrange??,???KT????,?????????.
- ???????????????.
- ??????????????.
1065 SVM????--??????(4/9)
- ????(Incremental Learning)??
- ??????????????????,??????????????????????.
- ??,????????????????????????????,?????????????.
- ??SVM??????????????.
1075 SVM????--??????(5/9)
- Syed????SVM??????.
- ??????????????SVM??,????????????????????????,?????
???,???????,?????????????,????????. - ???????????????.
- ??????????SVM????,Mettera?????????Adatron????SVM??
??,?????????????????????????. - ?Adatron???????Kernel-Adatron??,Frieb?????????????
??,???????,???????????.
1085 SVM????--??????(6/9)
- Cauwenburghs??????????????????????,??????????????L
agrange????????????????????. - ??????????????SVM???????-ISVM.
- ????????????????????????,?????????????????.
- Fung???????????SVM.
- ???????????SVM??,?????????.
1095 SVM????--??????(7/9)
- ????
- ????????????????,?SVM???????????.
- ????? (Nearest Point Algorithm,
NPA)????????????,?????????????????????????????????
??. - ????,?????????,?????????????????,????????????.
- ???????????????????????.
1105 SVM????--??????(8/9)
- ??????????????????SVM??????????Hessian?????.
- ???????????,???????,???????????????,???????.
- Fang??????????????,??????????????,?????????SVM????
?????. - ??????SVM??????????,???????????????????????,??????
??.
1115 SVM????--??????(9/9)
- A list of SVM implementation can be found at
- http//www.kernel-machines.org/software.html
- Some implementation (such as LIBSVM) can handle
multi-class classification - SVMLight is among one of the earliest
implementation of SVM - Several Matlab toolboxes for SVM are also
available
1126 SVM????(1/6)
- 6 ?????????
- SVMs Key Ideas, main contributions to learning
theory, are - maximize the margin between positive and negative
examples and optimal classification hyperplane - the kernel trick and nonlinear classification
- non-linear Kernels map examples into a new,
hihg-dimension space in which these examples are
linear discriminable. - Other contributions are
- Penalize errors in non-separable case
- Only the support vectors contribute to the
solution
1136 SVM????(2/6)
- SVM?????
- ??
- SVM?????????????????,???????????(?????),??????????
???????????????????????. - ??????,???????????.
- ??SVM???????????????,????????????????,??????????.
- ??SVM?NN?????????.
1146 SVM????(3/6)
- Given a kernel and a C, there is one unique
solution - Kernels allow very flexible hypotheses
- The kernel trick allows for a varying complexity
of the classifier - Training is relatively easy
- No local optimal, unlike in neural networks
- Tradeoff between classifier complexity and error
can be controlled explicitly - Non-traditional data like strings and trees can
be used as input to SVM, instead of feature
vectors - variable-sized hypothesis space sized
1156 SVM????(4/6)
- polynomial-time exact optimization rather than
approximate methods - unlike decision trees and neural networks
- The kernel trick allows for especially engineered
representations for problems - No strict data model is required (when you can
assume it, then use it) - The foundation of the SVC is pretty solid (when
the slack-variables are not used) - An error estimate is available using just the
training data (but it is a pretty loose estimate,
and cross-validation is still required to
optimize K or C)
1166 SVM????(5/6)
- ??
- Need to choose a good kernel function
- ???????????????F,????F???????????????,??????????.
- Very large problems are computationally
intractable - The kernel and C have to be optimized
- ?????????,SVM????????????????????????.
1176 SVM????(6/6)
- ???????????,????????,?????????,???????????????????
??,????????????????(although more and more
specialized optimizers appear). - ??????O(m3)
- problems with more than 20,000 examples are very
difficult to solve - ??????O(m2)
- ???SVM?????.Â
- Batch algorithm
- The SVC tends to have problems with highly
overlapping classes
1187 SVM??????????(1/7)
- 7 SVM??????????
- SVM?????
- ??????
- ????????SVM??????,???????????????????????????????.
- ????????
- SVM??????????,?????????????????.
- ??K(K????)?SVM??????????????????,????SVM??????????
??,??????????.
1197 SVM??????????(2/7)
- SVM????????
- ????SVM?????,????SVM?????.
- ???????
- ???SVM????????????????,?????????????????????,?????
??,????????????. - SVM??????
- ????SVM?????????,????SVM?????,?SVM?QP????????.
- ?SVM??????,????SVM?????????,????SVM?????,?SVM?QP??
??????.
1207 SVM??????????(3/7)
- ????
- ??,SVM??????(Batch Learning),??SVM???????????????.
- ??,????,?????????????.
- ???SVM????????????????????????,?SVM????????????.
- ??????SVM,?????????,?????????????,?????????????.
- ???????,????????????????LS-SVM.
1217 SVM??????????(4/7)
- LS-SVR????????????????????,????????,??????????????
???????. - ??????????????,LS-SVM??????????????,?????,????????
?. - ??????????????????,?????????,????????????.
- ??,??????????????????,?LS-SVM??????????,Suyken????
??????,????????. - ????,???????????,????????????????.
1227 SVM??????????(5/7)
- ??,????LS-SVM?????--???????(Vector Base
LearningVBL)?????????SVM???????. - ?????(Base Vector SetsBVS)?????????,?????????????
???????,????????????????LS-SVM?????????????,??????
?????????????. - SVM?????
- ????
- ????????NN???????,??????NN?????,??????????????????
On-line????,?????????????.
1237 SVM??????????(6/7)
- ????
- ????SVM?????????????????????????,????????,
- ??????????????interesting??
- 3D object recognition
- ????????
- ??????
- ????
- Stock forecasting
- Intrusion Detection Systems (IDSs)
- Image classification
1247 SVM??????????(7/7)
- Detecting Steganography in digital images
- Medical applications diagnostics, survival rates
... - Technical Combustion Engine Knock Detection
- Elementary Particle Identification in High Energy
Physics - Bioinformatics protein properties, genomics,
microarrays - Information retrieval, text categorization
- In the following web, more SVM applications can
be found - http//www.clopinet.com/isabelle/Projects/SVM/appl
ist.html
1258 Support Vector Regression(1/15)
- 8 Support Vector Regression
- ???????????????????,???????????.
- ?????????????????,????????????????.
- ??????????????????????????,????????????.
- ??????????????????????(??????)??????????????????,?
????. - ??,??????,??????????????????.
1268 Support Vector Regression(2/15)
- ????????????,??SVM???,??????????????????????????(
Support Vector Regression,SVR)?. - SVR??????
- nonlinear regression the with approximation of
kernel function - Linear regression in feature space
- Unlike in least square regression, the error
function is e-insensitive loss function - Intuitively, mistake less than e is ignored
- This leads to sparsity similar to SVM
1278 Support Vector Regression(3/15)
- ??LS?????SVR?????????????????.
1288 Support Vector Regression(4/15)
1298 Support Vector Regression(5/15)
1308 Support Vector Regression(6/15)
- ????-insensitive???SVR????,?????????
1318 Support Vector Regression(7/15)
- ????SVR??
- Given a data set x1, ..., xn with target
values u1, ..., un, we want to do e-SVR - The optimization problem is
1328 Support Vector Regression(8/15)
- ??C is a parameter to control the amount of
influence of the error - The ½w2 term serves as controlling the
complexity of the regression function - This is similar to ridge regression.
- Similar to SVM, this can be solved as a quadratic
programming problem
1338 Support Vector Regression(9/15)
- Similar to SVM, the SVR optimization problem can
be solved by the Lagrange method as follows
- ???i, ?i, ?i??i???????,??
- ?i, ?i, ?i, ?i?0
- ??????????Kuhn-Tucker??,?
1348 Support Vector Regression(10/15)
1358 Support Vector Regression(11/15)
- ?????i, ?i,????w,b,?i, ?i, ?i, ?i
1368 Support Vector Regression(12/15)
??w,b,?i, ?i, ?i, ?i????i, ?i???,????????i??i.
1378 Support Vector Regression(13/15)
- ??,SVM??????????????????????????
????????
1388 Support Vector Regression(14/15)
????????????????.
1398 Support Vector Regression(15/15)
- Similar to SVM, foe the nonlinear regressiove
peoblem, the regressive function with the kernel
function is as foloows.
- ??K(x,z)????.
- ???SVR?????????,??????????
- ?????
- ???
- ???
140????(1/2)
- ????
- 1 B.E. Boser et al. A Training Algorithm for
Optimal Margin Classifiers. Proceedings of the
Fifth Annual Workshop on Computational Learning
Theory 5 144-152, Pittsburgh, 1992. - 2 L. Bottou et al. Comparison of classifier
methods a case study in handwritten digit
recognition. Proceedings of the 12th IAPR
International Conference on Pattern Recognition,
vol. 2, pp. 77-82. - 3 V. Vapnik. The Nature of Statistical Learning
Theory. 2nd edition, Springer, 1999. - 4 C. Burges. A tutorial on support vector
machines for pattern recognition. Data Mining and
Knowledge Discovery, 2(2)955-974, 1998. - 5 N. Cristianini and J. Shawe-Taylor. An
introduction to support vector machines,
Cambridge University Press. 2000.
141????(2/2)
- ????(?)
- 6 A. J. Smola and B. Schölkopf. A Tutorial on
Support Vector Regression. NeuroCOLT Technical
Report NC-TR-98-030, Royal Holloway College,
University of London, UK, 1998. - 7 Feng J., and Williams P. M. (2001) The
generalization error of the symmetric and scaled
support vector machine IEEE T. Neural Networks
Vol. 12, No. 5. 1255-1260 - 8 http//www.kernel-machines.org/
- 9 http//svmlight.joachims.org
- 10 http//www.support-vector.net/
- 11 http//www.clopinet.com/isabelle/Projects/SVM
/