PowerPoint%20Presentation%20%20-%20%20Nessun%20titolo%20diapositiva - PowerPoint PPT Presentation

About This Presentation
Title:

PowerPoint%20Presentation%20%20-%20%20Nessun%20titolo%20diapositiva

Description:

items of type i have size s(i) and there are n(i) of them. problem ... otherwise add pattern maximizing knapsack. example. 3 types: type 1: size = 7; quantity = 50 ... – PowerPoint PPT presentation

Number of Views:27
Avg rating:3.0/5.0
Slides: 48
Provided by: paolose
Category:

less

Transcript and Presenter's Notes

Title: PowerPoint%20Presentation%20%20-%20%20Nessun%20titolo%20diapositiva


1
Advanced LP models
column generation
2
min
3
min
max
4
Bin packing example
bins of size K
items of different types
items of type i have size s(i) and there are
n(i) of them
problem
put all items into the bins minimizing the number
of bins
5
(No Transcript)
6
(No Transcript)
7
(No Transcript)
8
1
feasible patterns
2
0
9
(No Transcript)
10
........
1
2
0
0
1
0
0
3
x
........

2
0
2
0
0
4
3
4
........
0
0
4
4
4
0
2
8
11
min
max
12
........
1
2
0
0
1
0
0
........
2
0
2
0
0
4
3
........
0
0
4
4
4
0
2
13
1
2
0
14
integer
knapsack !
otherwise add pattern maximizing knapsack
15
example
bin capacity 20
3 types
type 1 size 7 quantity 50
type 2 size 5 quantity 100
type 3 size 3 quantity 70
y ( 0 1/4 1/2 )
y ( 1/3 1/4 1/6 )
0 1 5
y ( .35 .25 .15 )
16
however, change quantities to 52 97
71
how to get an integer solution?
17
(No Transcript)
18
compute the 5 longest paths
7
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
19
7
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
3
5
1
1
1
1
20
7
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
3
5
1
1
1
1
21
7
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
7
3
1
11
3
1
9
3
1
3
1
1
22
7
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
7
3
1
11
3
1
9
3
1
3
1
1
23
7
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
17
2
1
11
3
1
9
3
1
3
1
1
11
2
2
7
3
1
24
7
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
17
2
1
11
3
1
9
3
1
3
1
1
11
2
2
7
3
1
25
7
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
17
2
1
9
3
1
24
4
1
21
4
1
3
1
1
11
2
2
18
4
2
15
4
2
7
3
1
14
4
3
11
4
3
11
3
1
26
7
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
17
2
1
9
3
1
24
4
1
21
4
1
3
1
1
11
2
2
18
4
2
15
4
2
7
3
1
14
4
3
11
4
3
11
3
1
27
7
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
17
2
1
9
3
1
24
4
1
21
4
1
26
5
1
3
1
1
11
2
2
15
4
2
22
5
1
20
5
2
7
3
1
18
4
2
11
4
3
16
5
3
11
3
1
16
5
4
16
5
2
14
4
3
28
7
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
17
2
1
9
3
1
24
4
1
21
4
1
26
5
1
33
7
1
3
1
1
11
2
2
15
4
2
22
5
1
20
5
2
27
7
2
7
3
1
18
4
2
11
4
3
16
5
3
23
7
3
11
3
1
16
5
4
23
7
4
16
5
2
14
4
3
29
7
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
17
2
1
9
3
1
21
4
1
26
5
1
33
7
1
29
7
1
24
4
1
3
1
1
11
2
2
15
4
2
20
5
2
27
7
2
7
3
1
11
4
3
16
5
3
23
7
3
23
7
2
11
3
1
16
5
4
23
7
4
22
5
1
19
7
3
30
7
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
17
2
1
9
3
1
21
4
1
26
5
1
33
7
1
29
7
1
24
4
1
3
1
1
11
2
2
15
4
2
20
5
2
31
6
1
7
3
1
11
4
3
16
5
3
27
7
2
23
7
2
11
3
1
16
5
4
26
6
2
22
5
1
25
6
3
19
7
3
31
7
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
17
2
1
9
3
1
21
4
1
26
5
1
33
7
1
29
7
1
24
4
1
3
1
1
11
2
2
15
4
2
20
5
2
31
6
1
7
3
1
11
4
3
16
5
3
27
7
2
23
7
2
11
3
1
16
5
4
26
6
2
22
5
1
25
6
3
19
7
3
32
7
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
17
2
1
9
3
1
21
4
1
26
5
1
33
7
1
29
7
1
24
4
1
3
1
1
11
2
2
15
4
2
20
5
2
31
6
1
7
3
1
11
4
3
16
5
3
27
7
2
23
7
2
11
3
1
16
5
4
26
6
2
22
5
1
25
6
3
19
7
3
33
7
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
17
2
1
9
3
1
21
4
1
26
5
1
33
7
1
29
7
1
24
4
1
3
1
1
11
2
2
15
4
2
20
5
2
31
6
1
7
3
1
11
4
3
16
5
3
27
7
2
23
7
2
11
3
1
16
5
4
26
6
2
22
5
1
25
6
3
19
7
3
34
7
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
17
2
1
9
3
1
21
4
1
26
5
1
33
7
1
29
7
1
24
4
1
3
1
1
11
2
2
15
4
2
20
5
2
31
6
1
7
3
1
11
4
3
16
5
3
27
7
2
23
7
2
11
3
1
16
5
4
26
6
2
22
5
1
25
6
3
19
7
3
35
7
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
17
2
1
9
3
1
21
4
1
26
5
1
33
7
1
29
7
1
24
4
1
3
1
1
11
2
2
15
4
2
20
5
2
31
6
1
7
3
1
11
4
3
16
5
3
27
7
2
23
7
2
11
3
1
16
5
4
26
6
2
22
5
1
25
6
3
19
7
3
36
7
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
17
2
1
9
3
1
21
4
1
26
5
1
33
7
1
29
7
1
24
4
1
3
1
1
11
2
2
15
4
2
20
5
2
31
6
1
7
3
1
11
4
3
16
5
3
27
7
2
23
7
2
11
3
1
16
5
4
26
6
2
22
5
1
25
6
3
19
7
3
37
integer
V(j)optimal value for a knapsack of capacity j
V(j) max V(j - s(i)) y(i) i 1, ... , n
38
min
39
max b(i) y(i)
however this is the dual problem we need the
patterns which are in the primal
so lets make the dual of the above problem
40
It turns out that the dual is a flow problem
41
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
42
4
0
25
1
2
3
4
24
4
5
4
6
25
7
8
24
9
10
11
12
254
29
13
4
14
15
24
254
16
17
18
24
19
20
43
4
0
1
25
2
24
3
4
4
5
4
6
7
25
8
24
9
10
11
12
254
29
13
4
14
15
24
16
254
17
18
24
19
20
44
4
0
1
25
2
4
3
24
4
5
4
6
7
25
8
24
9
10
11
12
254
29
13
4
14
15
24
254
16
17
18
24
19
20
45
(No Transcript)
46
13
8
8
6 times
47
21
5
5
36
6 times
8 times
Write a Comment
User Comments (0)
About PowerShow.com