Title: A1263207975qUlfy
1Carbon Sequestration Potential of Different Types
of Forests in Liping and Puding Counties, Guizhou
Province
J.H. Xue S.Z. Fang Y.B. Wu (Nanjing
Forestry University, 210037 Nanjing, China)
2Part? Biomass estimation of four main types of
forests in Liping County
3Chinese fir
Masson pine
Bamboo
Broad-leaved forest
41. Research reports on the biomass estimation of
individual trees
(1) Chinese fir (Cunninghamia Lanceolata)
Site place Regression equation author
Fujian W1.1482D3.3671H2.1878 Lin,1993
Jiangxi W1.168650.2375D2 Hui,1988
Jiangsu W0.0240(D2H)0.9820 Tang, 2000
Zhejiang W0.2236(D2H)0.6912 Lin,1991
5(2) Masson pine (Pinus massoniana)
site Regression equation author
Fujian W1.0715D1.3633H0.1511 Lin,1993
Zhejiang lgW0.9797lgD2H-1.5794 Chen,1998
Guizhou W0.112(D2H)0.82424 ( 8-30a) Ding,2001
Guizhou W0.17747(D2H)0.73928(20a) Ding,2002
6(3) Bamboo (Phyllostachys pubescens)
site Regression equation author
Fujian 2.5735kg per stem (not related to stand age) Lan,2000
Zhejiang 4.448kg per stem(mid-level productivity forest)4.864kg per stem(high-level productivity forest) Huang,1993
Fujian W213.4164D-0.5805H2.3131 Chen,1998
7(4) Mixed Evergreen broad-leaved forest
Forest type area Regression equation author
??Cyclobalanopsis glauca Zhejiang W0.58154D2.13469 Du,1987
??Castanopsiseyrei Zhejiang W0.77107D2.15336 Du,1987
??Schima superba Zhejiang W1.04046D2.44866 Du,1987
??Lithocarpus glaber Zhejiang W0.74957D2.23288 Du,1987
Evergreen broad-leaved forest Guangdong Tree layer 152.83t/hm2(2333a) Shen,1996
Evergreen broad-leaved forest Hunan 213.6tC/hm2(10a)109.85 tC/hm2(8a) 89.75tC/hm2(3a) Tang,2003
82. Selection of appropriate biomass estimation
models for different types of forests
Stand type model
Chinese fir W0.0240(D2H)0.9820
Masson pine W0.112(D2H)0.82424
Bamboo W213.4164D-0.5805H2.3131
Mixed broad-leaved forest W0.77107D2.15336
93. Results of biomass estimation in Liping
Forest type Forest type Average D1.3(cm) Average H(m) Plot Number Biomass per stem(kg)
Chinese fir 12a 12.56 10.38 15 34.40
Chinese fir 25a 19.34 19.04 15 145.695
Masson pine Masson pine 19.87 18.29 15 84.85
Bamboo Bamboo 11.90 16.60 15 11.25
Mixed broadleaved forest Mixed broadleaved forest 18.60 21.20 15 192.26
104. Discussion
(1) The factors to affect the C sequestration of
forest stands
age (a) stand(tC/hm2) trees(tC/hm2)
Pure Masson pine forest 32 30.02 25.56
Masson pine Pasania glabra 25 89.73 72.49
Chinese fir forest 27 102.066 97.743
Chinese fir - Tsoongiodendron Chun 27 130.045 99.2
Chinese fir - Tsoongiodendron Chun 27 130.045 26.543
11site Hunan Hunan Hunan Hunan Jiangxi Jiangxi Jiangxi Jiangxi Jiangxi
age 7 7 7 7 12 12 12 12 12
density (stems /hm2) 3000 3600 4500 7500 1530 1845 2115 2407 2955
Carbon storage (tC/hm2) 44.2 53.7 62.0 76.2 89.87 99.67 102.79 108.88 119.98
With the increase of stand density, the
total stand C sequestration increased, but when
the density was too high, the proportion of stem
biomass to the total stand biomass became lower.
12The Carbon storages of Chinese Fir stands in
different ages and site indexes
Age grade ? ? ? ? ? ? ? ? ?
Site index 17 14 9 16 11 9 17 13 8
tC/hm2 30.68 28.69 13.34 56.96 46.95 30.78 79.9 59.83 37.46
With the increase of site index, the C
sequestration capacities of chinese fir stands
increased.
13The Carbon storages of Masson Pine stands in
different ages and site indexes
age (a) Site index tC/hm2 kgC/stem
22 12 65.93 25.4
22 16 108.8 55.24
22 19 125.87 94.1
30 12 86.87 50.7
30 16 116.94 73.8
14(2) The biomass estimation of different types of
stands with different densities
The biomass estimation with different assumed
stand density(t/hm2)
Forest type Forest type per stem (kg) 1000 stem/hm2 1500 stem/hm2
Chinese fir 12a 34.40 30.963 46.445
Chinese fir 25a 145.695 131.139 196.708
Populus deltoides Populus deltoides 70.09 63.087 94.631
Pinus massoniana Pinus massoniana 84.85 76.373 114.559
Phyllostachys pubescens Phyllostachys pubescens 11.25 10.126 15.189
15Part ? Evaluation on the carbon sequestration of
forest restoration in Puding karst mountain areas
of Guizhou province
161. Background
(1) Population and farming land area per capita
Changes of population growth, farming land area
and grain yield per capita in Guizhou
year 1950 1960 1970 1980 1990 2000
population(104) 1417.2 1642.99 2180.46 2776.67 3236.9 3732.89
Total Farming land area (km2) 17987 20667 19160 19040 18540 18435
Farming land area per capita (hm2) 0.127 0.126 0.088 0.069 0.057 0.049
Total grain yield (104t) 299.80 316.15 516.45 648.30 720.99 1161.30
grain yield per capita (kg) 211.6 186.7 241.2 235.4 222.7 311.1
Soil erosion area(104km2) 2.5 3.5 4.1 5 7.67 8.8
17Landscape in karst mountain area
18Soil erosion
19Soil erosion on steep farming slope
20Grain-for-green eco-project
21(No Transcript)
22(2) Studies on ecological effects of forest
restoration in Karst areas
- Eco-environmental research
- micro-habitat properties (Zhou, 1963,
Zhu,1993,2003) - micro-climatic properties (Zhou, 1993 Li, et al,
1998 Zhang,2000) - Water balance and cycling (Li,1987 He, 1997)
- Soil properties (Zhang et al, 1987Yang et
al,1999) - Plant communities
- Community structure and composition (Wang, 1981
Zhou,1993) - Community productivity (Yang, 1991Zhou,1995)
- Community seed pool(Liu,1997 You, 2003)
23- Forest vegetation restoration
- Natural restoration of forest ecosystems(Yu,1998
Li, 2003) - Afforestation and reforestation(Zhu et al,1999)
- Grain-for-green project on steep slopes
- tree species selection (Zhu,et al, 1999Chen, et
al,2001), site preparation(Zhou,1998,Gao,2003),sta
nd management (Zhou,2002) - Carbon cycling of Karst forests
- Soil carbon storage and respiration (Xu,
2003Pa, 2000, Ran, 2003) - Carbon sequestration evaluation
242. Materials and methodology (1)Basic properties
of different types of forest plantations
Forest type age (a) lithology density (stems/hm2) height (m) DBH (cm) soil depth (cm) rock rate()
Toona sinensis 10 limestone 2200 9.35 10.25 18.3 58.4
Toona sinensis 15 limestone 1117 8.32 10.02 19.1 58.6
Catalpa bungei 10 limestone 2200 6.59 7.12 10.2 5.3
Catalpa bungei 15 limestone 1200 7.62 10.50 31.5 69.9
Cupressus duclouxiana 5 limestone 2267 2.16 1.92 4.7 21.7
Cupressus duclouxiana 10 limestone 2217 4.57 4.43 18.4 5.7
Cupressus duclouxiana 15 limestone 1242 6.60 7.00 14.8 47.3
25Toona sinensis
Cupressus duclouxiana
26(2)Basic properties of different types of plant
communities in different natural restoration
stages
Restoration stages Height (m) Diameter (cm) Shannon-weiner index Species richness
Herb community 0.51 - - 28.3
Shrub-herb community 0.66 0.45 2.1346 23.3
Shrub cluster community 1.23 1.14 3.5834 29.4
Shrub-arbor community 1.96 1.93 4.2502 35.5
Secondary arbor community 7.16 8.89 2.8945 22.3
Arbor climax community 8.64 11.45 4.4096 37.3
27herb community
Shrub-herb community
Shrub-arbor community
Secondary arbor community
28Arbor climax community
29(3) Biomass estimation of different types of
forest stands
Wtree0.0755(D2H)0.8941 (Zhou et
al,1995) Wshrub0.0495(D2H) 0.07402 (Yu et
al,2002)
30(4)Estimation of carbon storages of aboveground
parts of trees, litter and soil
(1)Carbon storage of litter (Zhou, et al, 2000)
Carbon storage of litterbiomass of litter
0.5 (2)Carbon storage of aboveground(Olson et
al.,1983Levine et al.,1995Zhou et al,2000)
Carbon storage of aboveground biomass of
aboveground0.45 (3)organic carbon storage of
soil (Jenny,1988Fang et al., 1996)
Organic carbon storage of soil bulk density
sampling depth organic matter content0.58soil
area?
313. Results (1)Biomass estimation of different
types of forest plantations
Forest type age (a) Stand density (stem/hm2) biomass per stem (kg) Trees biomass (t/hm2) Shrubs biomass (t/hm2) Weeds biomass (t/hm2) Litter biomass (t/hm2) Total (t/hm2)
Toona sinensis 10 2200 7.12 3.5609 - - 1.5281 5.0890
Toona sinensis 15 1117 1.32 1.4769 0.1725 0.7300 2.2429 4.6223
Catalpa bungei 10 2200 1.40 5.2019 0.4325 0.3342 0.7779 6.7465
Catalpa bungei 15 1200 6.75 8.098 1.008 1.1023 10.2083
Cupressus duclouxiana 5 2267 0.09 0.2088 0.1481 0.7927 0.8864 2.036
Cupressus duclouxiana 10 2217 0.34 0.7478 0.1075 1.2218 1.4701 3.5472
Cupressus duclouxiana 15 1242 1.18 1.4703 0.3925 1.2136 2.7566 5.833
32(2) Biomass estimation of different types of
plant communities at different stages of natural
restoration
Restoration stage litter (t/hm2) Total biomass(t/hm2)
Restoration stage Trees biomass (t/hm2) tree/total biomass () Shrubs biomass (t/hm2) shrub/total biomass () Herb biomass (t/hm2) herb/total biomass() litter (t/hm2) Total biomass(t/hm2)
Herb community 1.5859 100.0 0.3559 1.9418
Shrub-herb community 2.0295 58.6 1.4361 41.44 0.8261 4.2917
Shrub cluster community 2.8170 69.5 1.2339 30.46 2.3465 6.3974
Shrub-arbor community 12.836 80.36 1.9581 12.3 1.1780 7.38 2.9812 18.9532
Secondary arbor community 54.675 96.99 1.3024 2.3 0.3963 0.70 5.1746 61.5476
Arbor climax community 64.268 97.62 1.4498 2.2 0.1201 0.18 7.4812 73.3192
33Stand Biomass of different restoration stages
Stand Biomass composition of different
restoration stages
34(3) Evaluation of carbon storages of different
forest plantations
t/hm2
type Age (a) Aboveground Aboveground Aboveground Aboveground litter Soil carbon storage Total carbon storage
type Age (a) Tree layer Shrub layer Herb layer total litter Soil carbon storage Total carbon storage
Toona sinensis 10 1.6025 -- -- 1.6025 0.1736 25.5750 27.3511
Toona sinensis 15 0.6646 0.0776 0.3285 1.0708 1.1215 26.1607 28.3529
Catalpa bungei 10 1.3825 0.1946 0.3441 1.9212 0.6586 30.0796 32.6594
Catalpa bungei 15 0.5049 -- 0.1504 0.6553 0.5434 36.2753 37.4740
Cupressus duclouxiana 5 0.0939 0.1129 0.3567 0.5635 0.4432 18.5562 19.5630
Cupressus duclouxiana 10 0.3365 0.0484 0.5498 0.9347 0.5207 54.5905 56.0458
Cupressus duclouxiana 15 0.6617 0.1766 0.5461 1.3841 1.3783 32.7351 35.4975
35(4) Evaluation of plant community carbon storages
at different stages of natural restoration
Restoring stage Aboveground Aboveground Aboveground Aboveground litter Soil carbon storage Total carbon storage
Restoring stage tree layer Shrub layer Herb layer total litter Soil carbon storage Total carbon storage
Herb community 0.7137 0.7137 0.1780 48.2550 49.1467
Shrub-herb community 0.9133 0.6462 1.5595 0.4131 42.7904 44.763
Shrub cluster community 1.2677 0.5553 1.8229 1.1733 34.6890 37.6852
Shrub-arbor community 5.7760 0.8811 0.5301 7.1873 1.4906 29.2622 37.9401
arbor community 24.6035 0.5861 0.1783 25.368 2.5873 38.8663 66.8215
arbor climax community 28.9208 0.6524 0.0540 29.627 3.7406 30.5930 63.9608
36(No Transcript)
374. Discussion (1)Comparision of carbon storages
between different types of vegetations
(t/hm2)
Vegetation type vegetation litter soil total
Karst evergreen deciduous broad-leaved forest 27.50 3.16 34.73 65.39
Temperate conifer forest 43.26 11.34 189.56 244.16
Warm conifer forest 47.97 5.55 110.30 163.82
Conifer or conifer broad-leaved mixed forest 64.76 7.66 335.58 408.00
Deciduous broad-leaved forest 47.75 5.85 208.90 262.50
Evergreen or evergreen deciduous broad-leaved forest 73.68 5.43 257.57 336.68
Hardwood evergreen broad-leaved forest 100.73 3.21 205.23 309.16
Tropical forest 100.86 3.00 116.40 230.35
38(2)Comparison of carbon storages between
plantations and natural restoration forest stand
- Reforestation could facilitate biomass
accumulation and carbon sequestration of stands
especially in early stage of restoration. - The stability of natural restoration forests was
much higher, but it took longer time for higher
carbon storages. - Farmers could be encouraged to choose
multi-purpose tree species, especially with
higher carbon sequestration potential by means of
compensation policy.
39Acknowledgement CIDA University of Toronto,
Canada Forestry Bureau of Liping County,
Guizhou Forestry Bureau of Puding County,
Guizhou Forestry Bureau of Baoying County,
Jiangsu All participants of Nanjing Forestry
University
40Thank you for your attention!