Title: NANOFRICTION-- AN INTRODUCTION
1 NANOFRICTION-- AN INTRODUCTION
E. Tosatti
SISSA/ICTP/Democritos
TRIESTE
2 Contents 1.
Friction. Generalities, history. 2. Stick-slip
versus smooth sliding friction mechanisms. 3.
Nanofriction experimental methods. AFM, QCM,
SFA 4. Nanofriction theory . a). Linear
response b). Nonlinear friction in simple
models Prandtl-Tomlinson,
Frenkel-Kontorova c). Simulated nanofriction
Molecular Dynamics--applications
3FRICTION NANOFRICTION
FN
FL
(MEYER)
(BRAUN)
FRICTION COEFFICIENT m FL/ FN
(usually0.1-1) General Refs B.N.J.
PERSSON, Sliding Friction, Springer (2000)
J.KRIM, Surf. Sci. 500,
741 (2002)
4RELEVANCE
-- FRICTION energy conservation machine wear
... -- NANOFRICTION basic understanding
nanotechnology.
5 HISTORY LEONARDO DA VINCI
1. Friction is independent of the geometrical
contact area 2. Friction is proportional to
normal load
AMONTONS
Guillaume Amontons (1663-1705)
6COULOMB
3. Friction independent of velocity 4. Friction
tied to roughness
EULER
5. Static vs. dynamic friction
7STATIC vs DYNAMIC FRICTION
SLIDING VELOCITY
Fs Fd
Fk Fr
APPLIED FORCE
8WHY FRICTION IS INDEP. OF AREA, AND PROPORT. TO
LOAD
Philip Bowden 1903-1968
Real contact surface AR FN/s ltlt A
DaVinci-Amonton's law explained FL t
AR t FN /s m FN
yield stress
BOWDEN - TABOR, 1950s
David Tabor 1913-2005
9Rodrigues et al. (2000)
Au
NANOCONTACTS
10MORE GENERAL SLIDING FRICTION MECHANISMS --
Entanglement of asperities, plastic deformation,
wear
(commonest macroscopic friction
mechanism) -- Viscous friction (fluid
interfaces, acquaplaning) -- Phonon
dissipation, elastic deformation (flat solid
interfaces) -- Bulk viscoelastic dissipation
(e.g., car tyres) -- Electronic friction
(metals, still being established) -- Vacuum
friction (more speculative) -- .....
11 6. Stick-slip motion vs smooth sliding
low velocity /or soft system high velocity
/or stiff system
12SOME EXPERIMENTAL NANOFRICTION
METHODS
13SOME EXPERIMENTAL TECHNIQUES
MACRO-MESOSCOPIC NANO
Tabor, Winterton, Israelachvili (1975)
Binnig, Quate, Gerber (1986)
14 FRICTION NANOFRICTION
(MEYER)
GERD BINNIG
HEINI ROHRER
15AFM INSTRUMENTS
Measure FL , F N Typical F N 1-100 nN
(MEYER)
16NaCl(100)
(MEYER et al)
-- ATOMIC STICK-SLIP MOTION OF TIP -- ENCLOSED
AREA IN (F, x) PLANE EQUALS DISSIPATED
FRICTIONAL ENERGY
17 QCM
(QUARTZ CRYSTAL MICROBALANCE)
a
Slip time t 2 t d (Q-1)/dw
KRIM, WIDOM, PRB 38, 12184 (1986)
18QCM
Frequency n 107 Hz Amplitude a 100
Angstrom Velocity v 2pn a 0.6
m/s Finertial M (2pn)2 a 3 x 10-15N 3 x
10-6nN VERY WEAK FORCE --gt LINEAR RESPONSE
REGIME!
19 THEORY (a)
LINEAR RESPONSE
20 ZERO EXTERNAL FORCE 2D BROWNIAN DIFFUSION
ltr2gt 4 Dt
y
x
21 WEAK EXTERNAL FORCE 2D DIFFUSIVE DRIFT
22LINEAR RESPONSE THEORY
lt v gt /m F ----gtgt viscous friction
m mobility EINSTEIN
RELATION mD/ kBT D S (w0)
S (w) F.T. ltv(t) - v(0)gt
VIVISCOUS FRICTION GOOD FOR FLUIDS, BUT NOT FOR
SOLIDS VIOLATES OBEY COULOMBS LAW, F
DEPENDENT ON VELOCITY
23 THEORY (b) SIMPLE
(MINIMALISTIC ) FRICTION
AND NANOFRICTION MODELS
24PRANDTL-TOMLINSON MODEL (1928)
v
keff
H (E0/2)cos(2pxtip/a) (keff/2)(xtip-x)2da
mping
25STIFF SOFT
LARGE K SMALL E
LARGE E SMALL K
SMOOTH SLIDING
STICK-SLIP SLIDING
F log v COULOMB!
F v
SASAKI, KOBAYASHI, TSUKADA, PRB 54 ,2138 (1996)
26STICK-SLIP
27FRENKEL-KONTOROVA MODEL (1938)
K
e
O.M.BRAUN, YU.S.KIVSHAR, The Frenkel Kontorova
Model Concepts, Methods, Applications,
Springer (2004)
28THE AUBRY TRANSITION
INCOMMENSURATE a c / a b IRRATIONAL
Fstatic
SLIDING
K
e
PINNED
e
g K /
gg
gc
g gtgc ZERO STATIC FRICTION g ltgc
FINITE STATIC FRICTION (PINNING)
29PHONON GAP OF PINNED SLIDER
w2
g gt gc
g lt gc
q
q
30 THEORY
(c) NANOFRICTION SIMULATIONS --
NEWTONIAN or LANGEVIN DYNAMICS -- FROM
MODELS TO REALISTIC MOLECULAR DYNAMICS (MD) --
MD EMPIRICAL AND AB INITIO FORCES --
VARIETY OF SYSTEMS, APPLICATIONS
31MOLECULAR DYNAMICS SIMULATIONS
NEWTON TOT (FREE) EN. LANGEVIN
THERMAL NOISE
- gvi(t) hi(t)
32EMPIRICAL INTERPARTICLE FORCES (EXAMPLE
LENNARD-JONES PAIR POTENTIAL)
33SLAB GEOMETRY
FREE SURFACE
PBC
PBC
FREE SURFACE
34EXAMPLE GRAZING FRICTION SIMULATION
Diamond
V
NaCl
35Load 1.0 nN
T 1100 K
(6 Ang)
Zykova-Timan, et al, Nature
Materials 6, 231 (2007)
36EXAMPLE PLOWING FRICTION WITH WEAR
HIGH TEMPERATURE NANOFRICTION, DIAMOND ON
NaCl(100)
Zykova-Timan, Ceresoli, Tosatti, Nature Materials
6, 231 (2007)
37(No Transcript)
38(No Transcript)
39SIMULATED LUBRICATION
(BRAUN)
40SQUEEZOUT
TARTAGLINO, SIVEBAEK, PERSSON, TOSATTI, J. Chem
Phys 125, 014704 (2006)
41BRAUN, PRL (2006)
42WHERE DOES THE ENERGY GO? WEAR PHONONS IN
SIMULATION, THE THERMOSTATING METHOD MAY
INFLUENCE AND FALSIFY THE REAL PHONON FRICTION
Temp.(K)
t (fs)
43SUMMARY
FRICTION OFFERS MUCH MORE INTEREST AT
NANOSCALE SIMPLE MODELS DEMONSTRATE STICK-SLIP,
PINNING TRANSITION SIMULATIONS EXTREMELY USEFUL
AND PREDICTIVE IN NANOFRICTION DISPOSAL OF
DISSIPATED PHONON ENERGY NEEDS SPECIAL ATTENTION
THE END
44 SOME
REFERENCES General B.N.J. PERSSON,
Sliding Friction, Springer (2000)
J.KRIM, Surf. Sci. 500, 741
(2002) Stic-slip in Prandtl- Tomlinson
ModelSASAKI, KOBAYASHI, TSUKADA, PRB 54 ,2138
(1996) Frenkel-Kontorova Model O.M.BRAUN,
YU.S.KIVSHAR, The Frenkel Kontorova Model
Concepts, Methods, Applications, Springer
(2004) Nanofriction Simulation Zykova-Timan et
al, Nat. Materials 6, 231 (2007) Squeezout
Simulation TARTAGLINO, SIVEBAEK, PERSSON,
TOSATTI, J. Chem
Phys 125, 014704 (2006) Nanoscale Rolling
Simulation O.M. BRAUN, PRL (2006)