NANOFRICTION-- AN INTRODUCTION - PowerPoint PPT Presentation

1 / 44
About This Presentation
Title:

NANOFRICTION-- AN INTRODUCTION

Description:

NANOFRICTION-- AN INTRODUCTION E. Tosatti SISSA/ICTP/Democritos TRIESTE NaCl Diamond V EXAMPLE: GRAZING FRICTION SIMULATION (6 Ang) T = 1100 K Load = 1.0 nN ... – PowerPoint PPT presentation

Number of Views:94
Avg rating:3.0/5.0
Slides: 45
Provided by: iopVastA
Category:

less

Transcript and Presenter's Notes

Title: NANOFRICTION-- AN INTRODUCTION


1
NANOFRICTION-- AN INTRODUCTION
E. Tosatti
SISSA/ICTP/Democritos
TRIESTE
2
Contents 1.
Friction. Generalities, history. 2. Stick-slip
versus smooth sliding friction mechanisms. 3.
Nanofriction experimental methods. AFM, QCM,
SFA 4. Nanofriction theory . a). Linear
response b). Nonlinear friction in simple
models Prandtl-Tomlinson,
Frenkel-Kontorova c). Simulated nanofriction
Molecular Dynamics--applications
3
FRICTION NANOFRICTION
FN
FL
(MEYER)
(BRAUN)
FRICTION COEFFICIENT m FL/ FN
(usually0.1-1) General Refs B.N.J.
PERSSON, Sliding Friction, Springer (2000)
J.KRIM, Surf. Sci. 500,
741 (2002)
4
RELEVANCE
-- FRICTION energy conservation machine wear
... -- NANOFRICTION basic understanding
nanotechnology.
5
HISTORY LEONARDO DA VINCI
1. Friction is independent of the geometrical
contact area 2. Friction is proportional to
normal load
AMONTONS
Guillaume Amontons (1663-1705)
6
COULOMB
3. Friction independent of velocity 4. Friction
tied to roughness
EULER
5. Static vs. dynamic friction
7
STATIC vs DYNAMIC FRICTION
SLIDING VELOCITY
Fs Fd
Fk Fr
APPLIED FORCE
8
WHY FRICTION IS INDEP. OF AREA, AND PROPORT. TO
LOAD
Philip Bowden 1903-1968
Real contact surface AR FN/s ltlt A
DaVinci-Amonton's law explained FL t
AR t FN /s m FN
yield stress
BOWDEN - TABOR, 1950s
David Tabor 1913-2005
9
Rodrigues et al. (2000)
Au
NANOCONTACTS
10
MORE GENERAL SLIDING FRICTION MECHANISMS --
Entanglement of asperities, plastic deformation,
wear



(commonest macroscopic friction
mechanism) -- Viscous friction (fluid
interfaces, acquaplaning) -- Phonon
dissipation, elastic deformation (flat solid
interfaces) -- Bulk viscoelastic dissipation
(e.g., car tyres) -- Electronic friction
(metals, still being established) -- Vacuum
friction (more speculative) -- .....
11
6. Stick-slip motion vs smooth sliding
low velocity /or soft system high velocity
/or stiff system
12
SOME EXPERIMENTAL NANOFRICTION
METHODS
13
SOME EXPERIMENTAL TECHNIQUES
MACRO-MESOSCOPIC NANO

Tabor, Winterton, Israelachvili (1975)
Binnig, Quate, Gerber (1986)
14
FRICTION NANOFRICTION
(MEYER)
GERD BINNIG
HEINI ROHRER
15
AFM INSTRUMENTS
Measure FL , F N Typical F N 1-100 nN
(MEYER)
16
NaCl(100)
(MEYER et al)
-- ATOMIC STICK-SLIP MOTION OF TIP -- ENCLOSED
AREA IN (F, x) PLANE EQUALS DISSIPATED
FRICTIONAL ENERGY
17
QCM
(QUARTZ CRYSTAL MICROBALANCE)
a
Slip time t 2 t d (Q-1)/dw
KRIM, WIDOM, PRB 38, 12184 (1986)
18
QCM
Frequency n 107 Hz Amplitude a 100
Angstrom Velocity v 2pn a 0.6
m/s Finertial M (2pn)2 a 3 x 10-15N 3 x
10-6nN VERY WEAK FORCE --gt LINEAR RESPONSE
REGIME!
19
THEORY (a)
LINEAR RESPONSE
20
ZERO EXTERNAL FORCE 2D BROWNIAN DIFFUSION
ltr2gt 4 Dt
y
x
21
WEAK EXTERNAL FORCE 2D DIFFUSIVE DRIFT
22
LINEAR RESPONSE THEORY
lt v gt /m F ----gtgt viscous friction
m mobility EINSTEIN
RELATION mD/ kBT D S (w0)
S (w) F.T. ltv(t) - v(0)gt
VIVISCOUS FRICTION GOOD FOR FLUIDS, BUT NOT FOR
SOLIDS VIOLATES OBEY COULOMBS LAW, F
DEPENDENT ON VELOCITY
23
THEORY (b) SIMPLE
(MINIMALISTIC ) FRICTION




AND NANOFRICTION MODELS
24
PRANDTL-TOMLINSON MODEL (1928)
v
keff
H (E0/2)cos(2pxtip/a) (keff/2)(xtip-x)2da
mping
25
STIFF SOFT
LARGE K SMALL E
LARGE E SMALL K
SMOOTH SLIDING
STICK-SLIP SLIDING
F log v COULOMB!
F v
SASAKI, KOBAYASHI, TSUKADA, PRB 54 ,2138 (1996)
26
STICK-SLIP
27
FRENKEL-KONTOROVA MODEL (1938)
K
e
O.M.BRAUN, YU.S.KIVSHAR, The Frenkel Kontorova
Model Concepts, Methods, Applications,
Springer (2004)
28
THE AUBRY TRANSITION
INCOMMENSURATE a c / a b IRRATIONAL
Fstatic
SLIDING
K
e
PINNED
e
g K /
gg
gc
g gtgc ZERO STATIC FRICTION g ltgc
FINITE STATIC FRICTION (PINNING)
29
PHONON GAP OF PINNED SLIDER
w2
g gt gc
g lt gc
q
q
30
THEORY
(c) NANOFRICTION SIMULATIONS --
NEWTONIAN or LANGEVIN DYNAMICS -- FROM
MODELS TO REALISTIC MOLECULAR DYNAMICS (MD) --
MD EMPIRICAL AND AB INITIO FORCES --
VARIETY OF SYSTEMS, APPLICATIONS
31
MOLECULAR DYNAMICS SIMULATIONS
NEWTON TOT (FREE) EN. LANGEVIN
THERMAL NOISE


- gvi(t) hi(t)
32
EMPIRICAL INTERPARTICLE FORCES (EXAMPLE
LENNARD-JONES PAIR POTENTIAL)
33
SLAB GEOMETRY
FREE SURFACE
PBC
PBC
FREE SURFACE
34
EXAMPLE GRAZING FRICTION SIMULATION
Diamond
V
NaCl
35
Load 1.0 nN
T 1100 K
(6 Ang)
Zykova-Timan, et al, Nature
Materials 6, 231 (2007)
36
EXAMPLE PLOWING FRICTION WITH WEAR
HIGH TEMPERATURE NANOFRICTION, DIAMOND ON
NaCl(100)
Zykova-Timan, Ceresoli, Tosatti, Nature Materials
6, 231 (2007)
37
(No Transcript)
38
(No Transcript)
39
SIMULATED LUBRICATION
(BRAUN)
40
SQUEEZOUT
TARTAGLINO, SIVEBAEK, PERSSON, TOSATTI, J. Chem
Phys 125, 014704 (2006)
41
BRAUN, PRL (2006)
42
WHERE DOES THE ENERGY GO? WEAR PHONONS IN
SIMULATION, THE THERMOSTATING METHOD MAY
INFLUENCE AND FALSIFY THE REAL PHONON FRICTION
Temp.(K)
t (fs)
43
SUMMARY
FRICTION OFFERS MUCH MORE INTEREST AT
NANOSCALE SIMPLE MODELS DEMONSTRATE STICK-SLIP,
PINNING TRANSITION SIMULATIONS EXTREMELY USEFUL
AND PREDICTIVE IN NANOFRICTION DISPOSAL OF
DISSIPATED PHONON ENERGY NEEDS SPECIAL ATTENTION
THE END
44
SOME
REFERENCES General B.N.J. PERSSON,
Sliding Friction, Springer (2000)
J.KRIM, Surf. Sci. 500, 741
(2002) Stic-slip in Prandtl- Tomlinson
ModelSASAKI, KOBAYASHI, TSUKADA, PRB 54 ,2138
(1996) Frenkel-Kontorova Model O.M.BRAUN,
YU.S.KIVSHAR, The Frenkel Kontorova Model
Concepts, Methods, Applications, Springer
(2004) Nanofriction Simulation Zykova-Timan et
al, Nat. Materials 6, 231 (2007) Squeezout
Simulation TARTAGLINO, SIVEBAEK, PERSSON,
TOSATTI, J. Chem
Phys 125, 014704 (2006) Nanoscale Rolling
Simulation O.M. BRAUN, PRL (2006)
Write a Comment
User Comments (0)
About PowerShow.com