Title: Berkeley Lab Generic Presentation
1Optics for ELIC - Collider Rings and Interaction
Region Design
Alex Bogacz Center for Advanced Studies of
Accelerators
2ELIC Ring-Ring Collider - Design Choices
- Figure-8 Collider Ring Topology
- Ensures spin preservation and ease of spin
manipulation (spin rotators) - Removes spin sensitivity to energy for all ion
species - Arc Optics Features
- Minimized emittance dilution due to quantum
excitations (leptons) - Limited synchrotron radiated power (leptons)
- Small momentum compaction to alleviate bunch
lengthening (both species) - Aggressive Interaction Region (IR)
- Vertically crossing rings - crab crossing
- Ultra small beta Interaction Point (IP)
- Dipole second IR configuration (D 0, D ? 0)
3ELIC Interaction Region Challenges
- Unprecedented high Luminosity 7.81034 cm-2
s-1 (peak luminosity per IP) - Enabled by short ion bunches (sz 5 mm), low
beta ß 5 mm), high rep. rate (1.5 GHz) - Crab Crossing required to alleviate luminosity
reduction and to avoid parasitic beam-beam
interaction due to high repetition rate - Multiple IRs (4)
- Chromatic compensation with sextupoles necessary
4Figure-8 Rings - Vertical Stacking
5Figure-8 Rings - Vertical Stacking
6Figure-8 Rings - Vertical Stacking
7Figure-8 Ring with 800 crossing
8Figure-8 Ion Ring (half) - Lattice at 225 GeV
8 empty cells
8 empty cells
3 transition cells
3 transition cells
30 full cells
Arc dipoles Lb210 cm B80.6 kG Arc
quadrupoles Lb100 cm G 7.6 kG/cm
phase adv./cell (Dfx 600, Dfy600)
9Figure-8 Ion Ring (half) - Lattice at 225 GeV
phase adv./cell (Dfx 600, Dfy600)
8 empty cells
8 empty cells
3 transition cells
3 transition cells
30 full cells
- Minimum dispersion lattice (periodic)
- Dispersion suppression via missing dipoles
(geometrical) - Uniform periodicity of Twiss functions (chromatic
cancellations) - Dispersion pattern tailored to chromaticity
compensation with sextupole families - One family every third cell (3 600 1800)
10Figure-8 Electron Ring (half) - Lattice at 9 GeV
22 empty cells
22 empty cells
28 superperiods (3 cells/superperiod)
Arc dipoles Lb300 cm B2.7 kG Arc
quadrupoles Lb30 cm G 4.3 kG/cm
phase adv./cell (Dfx 1200, Dfy1200)
11Figure-8 Electron Ring (half) - Lattice at 9 GeV
phase adv./cell (Dfx 1200, Dfy1200)
22 empty cells
22 empty cells
28 superperiods (3 cells/superperiod)
- Minimized emittance dilution due to quantum
excitations (emittance disp. inv. H) - Limited (manageable) synchrotron radiated power
Equilibrium Emittance (1200 FODO)
Synchrotron Radiated Power 14.3MW (total)
10.4kW/m _at_ 1.85A
12Figure-8 Electron Ring (half) - Lattice at 9 GeV
phase adv./cell (Dfx 1200, Dfy1200)
22 empty cells
22 empty cells
28 superperiods (3 cells/superperiod)
Momentum Compaction
- Quasi isochronous arc to alleviate bunch
lengthening - Dispersion pattern tailored to chromaticity
compensation with sextupole families - One family every third quad (3/2 1200 1800)
13Figure-8 Rings - Vertical Stacking
14Figure-8 Straights with two IPs
Note dimension of the drawing not to scale
Minimizing crossing angle reduces crab cavity
challenges and required RD
- 85 m free space to accommodate e/p
injection/ejection, SRF cavity, electron cooling,
and electron polarimeter
15IR design with interleaved FF quads
0.2m
0.5m 3.2kG/cm
22.2 mrad 1.27 deg
3.8m
0.6m 2.55kG/cm
10cm
8.4cm
IP
1.8m 20.8kG/cm
3m 12KG/cm
22.9cm
Vertical intercept
Vertical intercept
16.2cm
14.4cm
4.5m
Vertical intercept
electron
4mm
5mm
ion
16Lambertson quad for the final focus
B-Field in coil and force collar
following talk by Paul Brindza
17Crab Crossing - Multi-cell SRF cavities
K. Oide
Crab Cavity requirement for 22 mrad
crossing Electron 1.2 MV (KEK, single
cell, 1.4 MV) Ion 24 MV (multi-cell
cavity, RD raquired)
KEK B-Factory Crab Cavity - Squashed cell
cavity _at_ TM110 B field
18Final Focus Optics - Beam envelopes
Eelectron 9 GeV b 5/5 mm eN 90/3.6 mm
rad
bmax 3.1/32 km
smax 4.0/2.4 mm
Quads Lcm GkG/cm 50 3.2 60 -2.6 80 3.9 80
3.9
350 cm
350 cm
380 cm
220 cm
100 cm
380 cm
220 cm
100 cm
Eion 225 GeV b 5/5 mm eN 1.3/0.06 mm rad
smax 5.0/3.8 mm
bmax 4.8/54 km
Quads Lcm GkG/cm 180 20.8 300 -12.0 200
23.0 200 -22.0
350 cm
350 cm
450 cm
450 cm
100 cm
50 cm
100 cm
50 cm
19IR - Matching to the Ring
Eele 9 GeV
bx,ymax 3.1/32 km
bx,y 5 mm
3.8 m
FF doublet
FF doublet
matching singlet-doublet
FODO
20IR - Matching to the Ring
Eele 9 GeV
bx,ymax 3.1/32 km
bx,y 5 mm
3.8 m
FF doublet
FF doublet
matching singlet-doublet
FODO
21IR - Matching to the Ring
Eele 9 GeV
bx,ymax 3.1/32 km
bx,y 5 mm
3.8 m
FF doublet
FF doublet
matching singlet-doublet
FODO
22IR - Matching to the Ring
Eele 9 GeV
bx,ymax 3.1/32 km
bx,y 5 mm
3.8 m
FF doublet
FF doublet
matching singlet-doublet
FODO
23IR Beta Chromaticity
IR Ions
IR elactrons
Dp/p 0, 0.0001,.., 0.0005
following talk by Hisham Sayed
24Spin rotators - Electron Ring at 9 GeV
empty straight cells
full bending cells
Solenoid magnet Lb300 cm B100 kG
following talk by Pavel Chevtsov
25Spin rotators - Electron Ring at 9 GeV
empty straight cells
full bending cells
Skew Quads Lb90 cm G0.18 kG/cm
decoupled spin rotator module
EIC Collaboration Meeting, Hampton University,
May 19-23, 2008
26Conclusions
- Compelling case for High Luminosity ELIC
- Based on present assumptions 1035 cm-2 s-1
luminosity collider is feasible more studies
needed - Optics - Conceptual lattice design of major
sub-systems - Interleaved Interaction Regions for both species
- Figure-8 Arc lattices
- Matching between sections
- Compact Spin rotator Optics
- Still to come.
- Chromatic compensations, higher order effects
- Complete spin matching Optics (IR-to-IR)