Comparing Value-at-Risk Methodologies - PowerPoint PPT Presentation

1 / 91
About This Presentation
Title:

Comparing Value-at-Risk Methodologies

Description:

Value-at-Risk Quantile Regression Backtest Monte Carlo Empirical Application ... ARCH Quantile. Value-at-Risk Breno N ri. 15. General Framework ... – PowerPoint PPT presentation

Number of Views:180
Avg rating:3.0/5.0
Slides: 92
Provided by: Bre81
Category:

less

Transcript and Presenter's Notes

Title: Comparing Value-at-Risk Methodologies


1
Comparing Value-at-Risk Methodologies
  • Breno Néri
  • New York University
  • breno.neri_at_nyu.edu
  • http//homepages.nyu.edu/bpn207
  • With Luiz Lima
  • Financial Economics Workshop November 12th, 2007

2
Market Risk Exposure
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • 1987 Black Monday - 23 drop in value
  • 1995 Mexico
  • 1997 Asia
  • 1998 Russia and Latin America
  • 1998 Long-Term Capital Management

Oliver Linton
3
Measures of Market Risk
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Market Risk Exposure
  • Efficiency
  • 1996 amendment to the 1988 Basle Capital Accord
  • 1998 adopted by U.S. bank regulatory agencies

Lopez (JR, 1999)
4
VaR(p)
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
5
VaR(p)
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
6
General Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
Giot and Laurent (JEF, 2004)
7
General Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Conditional Mean OLS
  • Lags and/or other Conditioning Variables
  • Information Criteria
  • Akaike AIC
  • Schwarz (Bayesian) BIC
  • Shibata
  • Hannan-Quinn

8
General Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • RiskMetrics
  • Gaussian GARCH
  • Skewed-t APARCH
  • ARCH Quantile

9
General Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
ARCH(p)
  • RiskMetrics
  • Gaussian GARCH
  • Skewed-t APARCH
  • ARCH Quantile

Engle (ECA, 1982)
10
General Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
GARCH(p,q)
  • RiskMetrics
  • Gaussian GARCH
  • Skewed-t APARCH
  • ARCH Quantile

Bollerslev (JE, 1986)
11
General Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
APARCH(p,q)
  • RiskMetrics
  • Gaussian GARCH
  • Skewed-t APARCH
  • ARCH Quantile

Ding, Granger and Engle (JEF, 1993) He and
Teräsvirta (1999a,b)
12
General Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
Skewed Student-t
Fernández and Steel (JASA,1998) Lambert and
Laurent (2001)
13
General Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • RiskMetrics
  • Gaussian GARCH
  • Skewed-t APARCH
  • ARCH Quantile

J.P. Morgan (1996)
14
General Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • RiskMetrics
  • Gaussian GARCH
  • Skewed-t APARCH
  • ARCH Quantile

15
General Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • RiskMetrics
  • Gaussian GARCH
  • Skewed-t APARCH
  • ARCH Quantile

16
General Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • RiskMetrics
  • Gaussian GARCH
  • Skewed-t APARCH
  • ARCH Quantile

17
General Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • RiskMetrics
  • Gaussian GARCH
  • Skewed-t APARCH
  • ARCH Quantile

Giot (JFM, 2003) Giot and Laurent (JAE, 2003)
18
General Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • RiskMetrics
  • Gaussian GARCH
  • Skewed-t APARCH
  • ARCH Quantile

19
Exponential Power Function
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
20
Exponential Power Function
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
21
Exponential Power Function
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
22
Exponential Power Function
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Skewed Exponential Power Function
  • Skewed Gaussian
  • Skewed Student-t

23
M-Estimators
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Minimum/Maximum
  • Extremum Estimators

Huber (1964, 1965, 1982, 1981) Wooldridge / Green
/ Davidson and Mackinnon
24
M-Estimators
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
Wooldridge
25
M-Estimators
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Uniform Weak Law of Large Numbers

Wooldridge
26
M-Estimators
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Uniform Weak Law of Large Numbers

Wooldridge
27
M-Estimators
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
28
M-Estimators
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
29
M-Estimators
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
30
M-Estimators
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
31
M-Estimators FOC
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
32
M-Estimators Examples
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
33
M-Estimators Examples
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
34
M-Estimators Examples
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
35
M-Estimator Quantile Regression
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
36
M-Estimator Quantile Regression
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
37
M-Estimator Quantile Regression
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
38
M-Estimator Quantile Regression
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
39
M-Estimator Quantile Regression
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
40
Quantile Regression Equivariance
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
Koenker and Portnoy (BSA, 1996)
41
Quantile Regression
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
Koenker and Portnoy (BSA, 1996)
42
ARCH Quantile VaR
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • RiskMetrics
  • Gaussian GARCH
  • Skewed-t APARCH
  • ARCH Quantile

Wu and Xiao (JR, 2002)
43
ARCH Quantile VaR
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
Wu and Xiao (JR, 2002)
44
ARCH Quantile VaR
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
45
More on Quantile Regression
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Original Paper
  • Koenker and Basset (Econometrica, 1978)
  • Goodness of Fit
  • Koenker and Machado (JASA, 1999)
  • Inference on Quantile Regression Process
  • Koenker and Xiao (Econometrica, 2002)
  • Quantile AutoRegressive Model, QAR(p)
  • Koenker and Xiao (2004a)
  • Unit Root Test for each quantile in a QAR(p)
  • Koenker and Xiao (JASA, 2004b)

46
Backtests
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Unconditional Coverage
  • Point Estimator for p
  • Independence
  • Conditional Coverage
  • Dynamic Quantile
  • Magnitude Loss Function
  • Other Backtests
  • Time Until First Failure
  • Duration Based Approach
  • Mixed Test
  • CD-Test
  • Scale CD-Method

47
Backtests
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Unconditional Coverage
  • Point Estimator for p
  • Independence
  • Conditional Coverage
  • Dynamic Quantile
  • Magnitude Loss Function
  • Other Backtests
  • Time Until First Failure
  • Duration Based Approach
  • Mixed Test
  • CD-Test
  • Scale CD-Method

Kupiec (JD, 1995)
48
Backtests
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Unconditional Coverage
  • Point Estimator for p
  • Independence
  • Conditional Coverage
  • Dynamic Quantile
  • Magnitude Loss Function
  • Other Backtests
  • Time Until First Failure
  • Duration Based Approach
  • Mixed Test
  • CD-Test
  • Scale CD-Method

Haas (2001)
49
Backtests
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Unconditional Coverage
  • Point Estimator for p
  • Independence
  • Conditional Coverage
  • Dynamic Quantile
  • Magnitude Loss Function
  • Other Backtests
  • Time Until First Failure
  • Duration Based Approach
  • Mixed Test
  • CD-Test
  • Scale CD-Method

Christoffersen (IER, 1998)
50
Backtests
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Unconditional Coverage
  • Point Estimator for p
  • Independence
  • Conditional Coverage
  • Dynamic Quantile
  • Magnitude Loss Function
  • Other Backtests
  • Time Until First Failure
  • Duration Based Approach
  • Mixed Test
  • CD-Test
  • Scale CD-Method

Christoffersen (IER, 1998)
51
Backtests
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Unconditional Coverage
  • Point Estimator for p
  • Independence
  • Conditional Coverage
  • Dynamic Quantile
  • Magnitude Loss Function
  • Other Backtests
  • Time Until First Failure
  • Duration Based Approach
  • Mixed Test
  • CD-Test
  • Scale CD-Method

Engle and Manganelli (2002)
52
Backtests
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Unconditional Coverage
  • Point Estimator for p
  • Independence
  • Conditional Coverage
  • Dynamic Quantile
  • Magnitude Loss Function
  • Other Backtests
  • Time Until First Failure
  • Duration Based Approach
  • Mixed Test
  • CD-Test
  • Scale CD-Method

Lopez (FED-ER, 1999b)
53
Backtests
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Unconditional Coverage
  • Point Estimator for p
  • Independence
  • Conditional Coverage
  • Dynamic Quantile
  • Magnitude Loss Function
  • Other Backtests
  • Time Until First Failure
  • Duration Based Approach
  • Mixed Test
  • CD-Test
  • Scale CD-Method

54
Regulatory Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Basle Capital Accord
  • 1996 amendment
  • 1 billion
  • 10

Lopez (JR, 1999a)
55
Regulatory Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Basle Capital Accord
  • 1996 amendment
  • 1 billion
  • 10

Lopez (JR, 1999a)
56
Regulatory Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Basle Capital Accord
  • 1996 amendment
  • 1 billion
  • 10

Lopez (JR, 1999a)
57
Monte Carlo Genesis
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Enrico Fermi (1930)
  • Manhattan Project
  • Stanislay Ulam (1946)
  • Nicholas Metropolis
  • Top 10 Algorithms
  • ENIAC (1946)
  • MAthematical and Numerical Integrator And
    Computer
  • MANIAC (1952) and MANIAC II (1957)
  • with Richard Feynman

58
ENIAC
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
59
ENIAC
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
60
ENIAC
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
61
ENIAC UPenn
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
62
MAX (at NYU)
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
63
MAX (at NYU)
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
64
Non-Random QuickSort
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
65
Monte Carlo Simulations
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
Frery and Cribary-Neto(2005)
66
Monte Carlo Simulations
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
Frery and Cribary-Neto(2005)
67
Monte Carlo in Statistics
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
68
MC Specification
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • 10 DGPs
  • N 1000
  • T 1250
  • Rolling Temporal Window Size 250
  • 1 day-ahead-forecast VaR(1)

69
MC DGPs
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
70
MC Computational Details
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • 40,000,000 of optimizations (1000x1000x10x4)
  • R
  • RNG Mersenne-Twister (Matsumoto and Nishimura,
    1998)
  • Quantile Regression (implemented in Fortran by
    Koenker)
  • Interpreted Slower
  • Ox
  • Likelihood Maximizations
  • Compiled Faster
  • Estimation does not vary dramatically over time
  • Estimated parameters at t-1 are the initial guess
    at t
  • Maximum number of iterations
  • Convergence Criterion

71
MC Computational Details
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • EPGE03
  • 4 Intel Pentium IV Xeon 2.8 GHz
  • 4 Gb RAM
  • 100 GB SCSI HD
  • OS Linux Debian
  • Peak Performance lt10 Gflops

72
MC Computational Details
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • EPGE03
  • 4 Intel Pentium IV Xeon 2.8 GHz
  • 4 Gb RAM
  • 100 GB SCSI HD
  • OS Linux Debian
  • Peak Performance lt10 Gflops

73
MC Results
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Test Size at 1 Significance Level
  • Unconditional Coverage (Ho p1), Kupiec (1995)

74
Histograms Number of Violations per
Trajectory(DGP 6)
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
75
Histograms Number of Violations per
Trajectory(DGP 7)
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
76
Histograms Number of Violations per
Trajectory(DGP 8)
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
77
Histograms Number of Violations per
Trajectory(DGP 9)
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
78
Histograms Number of Violations per
Trajectory(DGP 10)
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
79
MC Results
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Distribution of Violations mean

80
MC Results
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Distribution of Violations Variance

81
MC Results
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Distribution of Violations MSE

82
MC Results
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Distribution of Violations Skewness

83
MC Results
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Distribution of Violations Excess Kurtosis

84
MC Results
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Distribution of Violations Min

85
MC Results
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Distribution of Violations Max

86
MC Results
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Distribution of Violations Range Max - Min

87
Empirical Exercise
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Data Ibovespa Daily Return
  • Period from 07/08/1996 to 03/24/2000
  • Observations 920 (670 forecasts, from
    07/11/1997)
  • VaR(1) ? 7 violations

88
Empirical Exercise
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Data Ibovespa Daily Return
  • Period from 07/08/1996 to 03/24/2000
  • Observations 920 (670 forecasts, from
    07/11/1997)
  • VaR(1) Þ 7 violations

89
Empirical Exercise
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Data Ibovespa Daily Return
  • Period from 07/08/1996 to 03/24/2000
  • Observations 920 (670 forecasts, from
    07/11/1997)
  • VaR(1) Þ 7 violations

90
Empirical Exercise
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
  • Data Ibovespa Daily Return
  • Period from 07/08/1996 to 03/24/2000
  • Observations 920 (670 forecasts, from
    07/11/1997)
  • VaR(1) ? 7 violations

91
Thank you!
  • Breno Néri
  • New York University
  • breno.neri_at_nyu.edu
  • http//homepages.nyu.edu/bpn207
  • With Luiz Lima
  • Financial Economics Workshop November 12th, 2007
Write a Comment
User Comments (0)
About PowerShow.com