Title: Comparing Value-at-Risk Methodologies
1Comparing Value-at-Risk Methodologies
- Breno Néri
- New York University
- breno.neri_at_nyu.edu
- http//homepages.nyu.edu/bpn207
- With Luiz Lima
- Financial Economics Workshop November 12th, 2007
2Market Risk Exposure
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- 1987 Black Monday - 23 drop in value
- 1995 Mexico
- 1997 Asia
- 1998 Russia and Latin America
- 1998 Long-Term Capital Management
Oliver Linton
3Measures of Market Risk
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Market Risk Exposure
- Efficiency
- 1996 amendment to the 1988 Basle Capital Accord
- 1998 adopted by U.S. bank regulatory agencies
Lopez (JR, 1999)
4VaR(p)
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
5VaR(p)
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
6General Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
Giot and Laurent (JEF, 2004)
7General Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Conditional Mean OLS
- Lags and/or other Conditioning Variables
- Information Criteria
- Akaike AIC
- Schwarz (Bayesian) BIC
- Shibata
- Hannan-Quinn
8General Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- RiskMetrics
- Gaussian GARCH
- Skewed-t APARCH
- ARCH Quantile
9General Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
ARCH(p)
- RiskMetrics
- Gaussian GARCH
- Skewed-t APARCH
- ARCH Quantile
Engle (ECA, 1982)
10General Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
GARCH(p,q)
- RiskMetrics
- Gaussian GARCH
- Skewed-t APARCH
- ARCH Quantile
Bollerslev (JE, 1986)
11General Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
APARCH(p,q)
- RiskMetrics
- Gaussian GARCH
- Skewed-t APARCH
- ARCH Quantile
Ding, Granger and Engle (JEF, 1993) He and
Teräsvirta (1999a,b)
12General Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
Skewed Student-t
Fernández and Steel (JASA,1998) Lambert and
Laurent (2001)
13General Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- RiskMetrics
- Gaussian GARCH
- Skewed-t APARCH
- ARCH Quantile
J.P. Morgan (1996)
14General Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- RiskMetrics
- Gaussian GARCH
- Skewed-t APARCH
- ARCH Quantile
15General Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- RiskMetrics
- Gaussian GARCH
- Skewed-t APARCH
- ARCH Quantile
16General Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- RiskMetrics
- Gaussian GARCH
- Skewed-t APARCH
- ARCH Quantile
17General Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- RiskMetrics
- Gaussian GARCH
- Skewed-t APARCH
- ARCH Quantile
Giot (JFM, 2003) Giot and Laurent (JAE, 2003)
18General Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- RiskMetrics
- Gaussian GARCH
- Skewed-t APARCH
- ARCH Quantile
19Exponential Power Function
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
20Exponential Power Function
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
21Exponential Power Function
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
22Exponential Power Function
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Skewed Exponential Power Function
- Skewed Gaussian
- Skewed Student-t
23M-Estimators
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Minimum/Maximum
- Extremum Estimators
Huber (1964, 1965, 1982, 1981) Wooldridge / Green
/ Davidson and Mackinnon
24M-Estimators
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
Wooldridge
25M-Estimators
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Uniform Weak Law of Large Numbers
Wooldridge
26M-Estimators
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Uniform Weak Law of Large Numbers
Wooldridge
27M-Estimators
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
28M-Estimators
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
29M-Estimators
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
30M-Estimators
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
31M-Estimators FOC
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
32M-Estimators Examples
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
33M-Estimators Examples
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
34M-Estimators Examples
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
35M-Estimator Quantile Regression
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
36M-Estimator Quantile Regression
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
37M-Estimator Quantile Regression
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
38M-Estimator Quantile Regression
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
39M-Estimator Quantile Regression
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
40Quantile Regression Equivariance
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
Koenker and Portnoy (BSA, 1996)
41Quantile Regression
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
Koenker and Portnoy (BSA, 1996)
42ARCH Quantile VaR
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- RiskMetrics
- Gaussian GARCH
- Skewed-t APARCH
- ARCH Quantile
Wu and Xiao (JR, 2002)
43ARCH Quantile VaR
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
Wu and Xiao (JR, 2002)
44ARCH Quantile VaR
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
45More on Quantile Regression
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Original Paper
- Koenker and Basset (Econometrica, 1978)
- Goodness of Fit
- Koenker and Machado (JASA, 1999)
- Inference on Quantile Regression Process
- Koenker and Xiao (Econometrica, 2002)
- Quantile AutoRegressive Model, QAR(p)
- Koenker and Xiao (2004a)
- Unit Root Test for each quantile in a QAR(p)
- Koenker and Xiao (JASA, 2004b)
46Backtests
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Unconditional Coverage
- Point Estimator for p
- Independence
- Conditional Coverage
- Dynamic Quantile
- Magnitude Loss Function
- Other Backtests
- Time Until First Failure
- Duration Based Approach
- Mixed Test
- CD-Test
- Scale CD-Method
47Backtests
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Unconditional Coverage
- Point Estimator for p
- Independence
- Conditional Coverage
- Dynamic Quantile
- Magnitude Loss Function
- Other Backtests
- Time Until First Failure
- Duration Based Approach
- Mixed Test
- CD-Test
- Scale CD-Method
Kupiec (JD, 1995)
48Backtests
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Unconditional Coverage
- Point Estimator for p
- Independence
- Conditional Coverage
- Dynamic Quantile
- Magnitude Loss Function
- Other Backtests
- Time Until First Failure
- Duration Based Approach
- Mixed Test
- CD-Test
- Scale CD-Method
Haas (2001)
49Backtests
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Unconditional Coverage
- Point Estimator for p
- Independence
- Conditional Coverage
- Dynamic Quantile
- Magnitude Loss Function
- Other Backtests
- Time Until First Failure
- Duration Based Approach
- Mixed Test
- CD-Test
- Scale CD-Method
Christoffersen (IER, 1998)
50Backtests
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Unconditional Coverage
- Point Estimator for p
- Independence
- Conditional Coverage
- Dynamic Quantile
- Magnitude Loss Function
- Other Backtests
- Time Until First Failure
- Duration Based Approach
- Mixed Test
- CD-Test
- Scale CD-Method
Christoffersen (IER, 1998)
51Backtests
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Unconditional Coverage
- Point Estimator for p
- Independence
- Conditional Coverage
- Dynamic Quantile
- Magnitude Loss Function
- Other Backtests
- Time Until First Failure
- Duration Based Approach
- Mixed Test
- CD-Test
- Scale CD-Method
Engle and Manganelli (2002)
52Backtests
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Unconditional Coverage
- Point Estimator for p
- Independence
- Conditional Coverage
- Dynamic Quantile
- Magnitude Loss Function
- Other Backtests
- Time Until First Failure
- Duration Based Approach
- Mixed Test
- CD-Test
- Scale CD-Method
Lopez (FED-ER, 1999b)
53Backtests
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Unconditional Coverage
- Point Estimator for p
- Independence
- Conditional Coverage
- Dynamic Quantile
- Magnitude Loss Function
- Other Backtests
- Time Until First Failure
- Duration Based Approach
- Mixed Test
- CD-Test
- Scale CD-Method
54Regulatory Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Basle Capital Accord
- 1996 amendment
- 1 billion
- 10
Lopez (JR, 1999a)
55Regulatory Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Basle Capital Accord
- 1996 amendment
- 1 billion
- 10
Lopez (JR, 1999a)
56Regulatory Framework
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Basle Capital Accord
- 1996 amendment
- 1 billion
- 10
Lopez (JR, 1999a)
57Monte Carlo Genesis
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Enrico Fermi (1930)
- Manhattan Project
- Stanislay Ulam (1946)
- Nicholas Metropolis
- Top 10 Algorithms
- ENIAC (1946)
- MAthematical and Numerical Integrator And
Computer - MANIAC (1952) and MANIAC II (1957)
- with Richard Feynman
58ENIAC
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
59ENIAC
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
60ENIAC
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
61ENIAC UPenn
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
62MAX (at NYU)
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
63MAX (at NYU)
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
64Non-Random QuickSort
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
65Monte Carlo Simulations
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
Frery and Cribary-Neto(2005)
66Monte Carlo Simulations
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
Frery and Cribary-Neto(2005)
67Monte Carlo in Statistics
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
68MC Specification
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- 10 DGPs
- N 1000
- T 1250
- Rolling Temporal Window Size 250
- 1 day-ahead-forecast VaR(1)
69MC DGPs
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
70MC Computational Details
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- 40,000,000 of optimizations (1000x1000x10x4)
- R
- RNG Mersenne-Twister (Matsumoto and Nishimura,
1998) - Quantile Regression (implemented in Fortran by
Koenker) - Interpreted Slower
- Ox
- Likelihood Maximizations
- Compiled Faster
- Estimation does not vary dramatically over time
- Estimated parameters at t-1 are the initial guess
at t - Maximum number of iterations
- Convergence Criterion
71MC Computational Details
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- EPGE03
- 4 Intel Pentium IV Xeon 2.8 GHz
- 4 Gb RAM
- 100 GB SCSI HD
- OS Linux Debian
- Peak Performance lt10 Gflops
72MC Computational Details
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- EPGE03
- 4 Intel Pentium IV Xeon 2.8 GHz
- 4 Gb RAM
- 100 GB SCSI HD
- OS Linux Debian
- Peak Performance lt10 Gflops
73MC Results
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Test Size at 1 Significance Level
- Unconditional Coverage (Ho p1), Kupiec (1995)
74Histograms Number of Violations per
Trajectory(DGP 6)
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
75Histograms Number of Violations per
Trajectory(DGP 7)
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
76Histograms Number of Violations per
Trajectory(DGP 8)
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
77Histograms Number of Violations per
Trajectory(DGP 9)
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
78Histograms Number of Violations per
Trajectory(DGP 10)
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
79MC Results
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Distribution of Violations mean
80MC Results
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Distribution of Violations Variance
81MC Results
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Distribution of Violations MSE
82MC Results
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Distribution of Violations Skewness
83MC Results
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Distribution of Violations Excess Kurtosis
84MC Results
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Distribution of Violations Min
85MC Results
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Distribution of Violations Max
86MC Results
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Distribution of Violations Range Max - Min
87Empirical Exercise
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Data Ibovespa Daily Return
- Period from 07/08/1996 to 03/24/2000
- Observations 920 (670 forecasts, from
07/11/1997) - VaR(1) ? 7 violations
88Empirical Exercise
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Data Ibovespa Daily Return
- Period from 07/08/1996 to 03/24/2000
- Observations 920 (670 forecasts, from
07/11/1997) - VaR(1) Þ 7 violations
89Empirical Exercise
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Data Ibovespa Daily Return
- Period from 07/08/1996 to 03/24/2000
- Observations 920 (670 forecasts, from
07/11/1997) - VaR(1) Þ 7 violations
90Empirical Exercise
Value-at-Risk Quantile Regression
Backtest Monte Carlo
Empirical Application
- Data Ibovespa Daily Return
- Period from 07/08/1996 to 03/24/2000
- Observations 920 (670 forecasts, from
07/11/1997) - VaR(1) ? 7 violations
91Thank you!
- Breno Néri
- New York University
- breno.neri_at_nyu.edu
- http//homepages.nyu.edu/bpn207
- With Luiz Lima
- Financial Economics Workshop November 12th, 2007