Title: In vitro biochemical circuits
1In vitro biochemical circuits
- Leader Erik Winfree co-leader Jongmin Kim
- The synthetic biology problem
- The experimental system we are investigating
- A general problem it motivates
- A specific problem to tackle
2In vitro biochemical circuits
- Leader Erik Winfree co-leader Jongmin Kim
- The synthetic biology problem
- Reductionism system behavior from component
characteristics - The complexity gap
- Synthesis of in vitro biochemical circuits
- The experimental system we are investigating
- A general problem it motivates
- A specific problem to tackle
3In vitro biochemical circuits
- Leader Erik Winfree co-leader Jongmin Kim
- The synthetic biology problem
- The experimental system we are investigating
- Circuits of rationally-designed transcriptional
switches - A general problem it motivates
- A specific problem to tackle
R
R
Itot
DA
Atot
promoter
A
I
R
4In vitro biochemical circuits
- Leader Erik Winfree co-leader Jongmin Kim
- The synthetic biology problem
- The experimental system we are investigating
- A general problem it motivates
- There are many subspecies and side reactions.
- How do we obtain a simplified model for analysis?
- A specific problem to tackle
ON
OFF
ON
OFF
By RNA polymerase
By RNase
5In vitro biochemical circuits
- Leader Erik Winfree co-leader Jongmin Kim
- The synthetic biology problem
- The experimental system we are investigating
- A general problem it motivates
- A specific problem to tackle
- Phase space analysis of simple circuits
- a bistable switch and a ring oscillator
e.g. cloud size
6Mass action chemical kinetics
7An adjustable transcriptional switch
8Networks of transcriptional switches
9Michaelis-Menten reactions
Michaelis-Menten reactions lead to competition
for - RNA polymerase by DNA templates -
RNase by RNA products
Can have interesting consequences like
Winner-take-all network
10Experimental system
11Sequence design
TCATGGAACTACAACAGGCAACTAATACGACTCACTATAGGGAGAAGCAA
CGATACGGTCTAGAGTCACTAAGAGTAATACAGAACTGACAAAGTCAGAA
A
GCTGAGTGATATCCC TC TTCG TTGCTATG
CCAGATCTCAGTGATTCT CATTAT GTCTTGACTG TTTC AGTCTTT
GTGTTCCT AGTACCTTGATGTT GTCCGTTGATTAT
Promoter
A
A
A
GGGAGA
CTGAC
GTCAG
AGCAACGATACGGTCTAGAGTCACTAAGAGTAATACAGAA
AAA
12Components
D12
ATTGAGGTAAGAAAGGTAAGGATAATACGACTCACTATAGGGAGAAACAA
AGAACGAACGACACTAATGAACTACTACTACACACTAATACTGACAAAGT
CAGAAA
TTTC TGACTTTGTCAGTATTAGTGTGTAGTAGTAGTTCATTAGTG
TCGTTCG TTCTTTGTTTCTCCCTATAGTGAGTCG
TATTATCCTTACCTTTCTTACCTCAATCTTCGCCT
A2
D21
CTAATGAACTACTACTACACACTAATACGACTCACTATAGGGAGAAGGAG
AGGCGAAGATTGAGGTAAGAAAGGTAAGGATAATACTGACAAAGTCAGAA
A
TATTAGTGTGTAGTAGTAGTTCATTAGTGTCGTTC
TTTCTGACTTTGTCAGTATTATCC TT ACC TTT C TT
ACCTCAATCTTCGCCTCTCCTTCTCCCTATAGTGAGTCG
A1
RNAP
RNase H
RNase R
13Transition curve DNA inhibitor
T7 RNAP RNase H(1U) RNase R(200nM)
I2
D21100nM A500nM
Inhibitor 2
Inh2
add DNA
Sw21
dI1
Inh1
Atot
14Transition curve RNA inhibitor
T7 RNAP RNase H(0.7U) RNase R(150nM)
I2
D130-60nM D2180nM A400nM
Inhibitor 2
Sw21
Inhibitor 1
Inh2
Inh1
Atot
I1
Sw13
15Fluorescence
OFF
High signal
ON
Low signal
16Bistable switch
Sw21
Inh2
Inh1
Sw12
17Bistable switch
Sw21 ON
Sw12 ON
18Summary
- Need better quantitative understanding
- make a better system
- understand how messy system works
- Cells have misfolded, mutated species all the
time - Neural networks have distributed architecture
19Possible complications
20Inhibitor interacting with Switch/Enzyme complex
RNAP
RNAP
I RDA -gt RD AI
21Abortive transcripts (Messiness 1)
RNAP
RNAP
R DA lt-gt RDA -gt R DA I60, I45, I14 ,I8
22RNase R needs to clean up
RNase R
I8, I14
RNase R
Rr In lt-gt RrIn -gt Rr
23Activator crosstalk
A2
D21 A2 -gt D21A2
24Nicked at -12/-13 has no crosstalk
D21A1
D21A2
D21
T7 RNAP
D21100nM, 500nM
D21
I2
A1 or A2
Stoichiometric amounts of activator
Transcription level ()
25Incomplete degradation by RNaseH (Messiness 2)
RNase H
I45
hp
RNase H
A
RhAI -gt Rh A In hp
26RNase H can keep going
RNase H
I45
Rh AIn lt-gt RhAIn -gt Rh AIm
A
RNase H
I27
I27
RNase H
A
A
RNase H
RNase H
I14
I14
A
A
27Lots of truncated RNA products
R(0nM)
R(100nM)
R(200nM)
R(400nM)
T7 RNAP RNase H(1.5U) RNase R
60
120
120
120
60
180
180
180
120
60
60
180
D2130nM A150nM
I2
Inh2
sI2
Sw21
I2 hairpin ?
28Activator-activator or Inhibitor-inhibitor complex
I
I
I I -gt II
29RNA extension by RNAP
RNAP
I
I
RNAP
R I -gt RI -gt R I
30Extended RNA species
R(0nM)
R(100nM)
R(200nM)
R(400nM)
T7 RNAP RNase H(1.5U) RNase R
60
120
120
120
60
180
180
180
120
60
60
180
Extended I2 complex
D2130nM A150nM
I2
Inh2
Sw21
31Enzyme life-time
RNAP
R -gt ø
32NTP/buffer exhaustion
RNAP
CTP
ATP
GTP
UTP
RNAP
RDA 60NTP -gt R DA I
33I2 level is stable (up to 6hr)
R(0nM)
R(100nM)
R(200nM)
R(400nM)
T7 RNAP RNase H(1.5U) RNase R
60
120
120
120
60
180
180
180
120
60
60
180
D2130nM A150nM
I2
Inh2
Sw21
34RNase degrading DNA
RNase H
RNase H
Rh A -gt RhA -gt Rh
35DNA bands are stable
R(0nM)
R(100nM)
R(200nM)
R(400nM)
T7 RNAP RNase H(1.5U) RNase R
60
120
120
120
60
180
180
180
120
60
60
180
D2130nM A150nM
DNA sense
DNA temp
Inh2
BH-A
Sw21
36Initial burst
RNAP
RNAP
RDA -gt R DA I
k(t)
37Model choice (basic)
- D A lt-gt DA
- A I lt-gt AI
- DA I lt-gt DAI -gt D AI
- R DA lt-gt RDA -gt R DA I
- R D lt-gt RD -gt R D I
- Rh AI lt-gt RhAI -gt Rh A
- Rr I lt-gt RrI -gt Rr
38Model choice (with messiness)
- D A lt-gt DA
- A In lt-gt AIn
- DA In lt-gt DAIn lt-gt D AIn
- R DA lt-gt RDA -gt R DA In
- R DAI1n lt-gt RDAI1n -gt R DAI1n I2n
- R D lt-gt RD -gt R D In
- Rh AIn lt-gt RhAIn -gt Rh AIm ( hp)
- Rr In lt-gt RrIn -gt Rr
39Questions
- Bistable circuit phase diagram
- Oscillator circuit phase diagram
- Bistable circuit model reduction
- Oscillator circuit model reduction
- Transcription switch input/output model reduction