Presentacin de PowerPoint - PowerPoint PPT Presentation

1 / 13
About This Presentation
Title:

Presentacin de PowerPoint

Description:

Local Consistency in Weighted CSP and Inference in Max-SAT. Student: ... ret v; Max-DPLL. UP(Unit Propagation): Basic Rules UCR. Notation: O T 'replace O by T' ... – PowerPoint PPT presentation

Number of Views:59
Avg rating:3.0/5.0
Slides: 14
Provided by: Fede64
Category:

less

Transcript and Presenter's Notes

Title: Presentacin de PowerPoint


1
Local Consistency in Weighted CSP and Inference
in Max-SAT
Student Federico Heras Advisor Javier Larrosa
2
Overview
  • Max-SAT is an optimization problem. We propose
  • A new Max-SAT framework.
  • An extension of DPLL.
  • An extension of the resolution Rule.
  • As result we obtain
  • Algorithms with a logic flavour.
  • Nice connections with Weighted CSP.

3
(Weighted) Max-SAT
  • Weighted clause (C,w)
  • C clause, w weight (cost of violation)
  • WCNF formula F(C,w),.. set of weighted
    clauses
  • Truth assignment cost sum of costs of
    unsatisfied clauses
  • Max-SAT instance lt F, ? gt
  • Model truth assignment with cost lt ?
  • Goal minimum cost model
  • Fl instantiate set of clauses F with literal
    l
  • if l?C then remove C from F
  • if l?C then remove l from C

4
(Weighted) Max-SAT
  • (?,w) is an obvious lower bound of the optimum
  • ? is an upper bound
  • if wgt ? then (C,w)(C, ?)
  • (C, ?) is a mandatory clause
  • If (?,?)?F then there is a contradiction
  • sum of costs v?w minvw, ?
  • subtraction of costs

a b a ? T T a T
a b
5
Max-DPLL
Function Max-DPLL(F, T) nat FUP(F) if
(?, T)? F then ret T if FØ then ret 0 if
F(?, w) then ret w lSelectLiteral(F) vMax
-DPLL(Fl, T) vMax-DPLL(Fl,v) ret v
6
Max-DPLL
  • UP(Unit Propagation) Basic Rules UCR.
  • Notation
  • O?T replace O by T.
  • x, y, z, boolean variables
  • A, B, C clauses (set of literals)
  • Basic Rules
  • (A,0) ?
  • (x ? x ? A,w) ?
  • (A,w),(A,u) ? (A,w?u)
  • if (w?u ?) then (A,w),(A ? B,u) ? (A,w),(A ?
    B, ?)
  • UCR (Unit clause Reduction). Selects a mandatory
    clause (l,T) and instantiates the corresponding
    value in accordance to the literal in that clause.

7
Basic Rules Example (? 5)
(?,1), (x,3), (x,1), (x,1), (y,3), (y,2), (x ?
y ? z,1)
(?,1), (x,4), (x,1), (y,3), (y,2), (x ? y ?
z,1)
(?,1), (x, T), (x,1), (y,3), (y,2), (x ? y ?
z,1)
(?,2), (y,3), (y,2), (y ? z,1)
(?,2), (y, T), (y,2), (y ? z,1)
(?,4), (z,1)
(?,4), (z, T)
(?,4)
8
Max-SAT Resolution
(A ? B,m),(x ? A,u-m), (x ? B, w-m), (x ? A ?
B,m), (x ? A ? B,m)
(x ? A,u), (x ? B,w) ?
where mminu,w
9
Max-SAT Resolution
(A v B,m),(x v A,u-m),(x v B, w-m), (x v A v
B,m),(x v A v B,m)
(x v A,u), (x v B,w)
x A B
uu00w0w0
m00 0 m000
??? ? ? ? ? ?
u-mu-m0 0 0 0 00
0000w-m0w-m0
??? ? ? ? ? ?
??? ? ? ? ? ?
0m000000
??? ? ? ? ? ?
000000m0
f f ff f tf t ff t tt f ft f tt t ft t t
10
Neighborhood Resolution
NRES Resolution with AB
(A,m),(x ? A,u-m), (x ? A, w-m)
(x ? A,u), (x ? A,w) ?
(where mminu,w)
If A0 (NRES0)
(?,m),(x,u-m), (x,w-m)
(x,u), (x,w)
(where mminu,w)
  • NRES0 is equivalent to NC for WCSP.
  • NRES1 is equivalent to AC for WCSP.

11
Modus Ponens
(Binary)MP (Modus Ponens) Resolution with Ay
and Bfalse.
(x ? y,u-m),(x,w-m), (y, m), (x ? y, m)
(x ? y,u), (x,w) ?
(where mminu,w)
(Binary)MPE (Modus ponens Empty) Resolution with
Ay and Bfalse and an additional unary clause.
(x ? y,u-m),(x,w-m), (y, v-m), (x ? y,
m) (?,m)
(where mminu,w,v)
(x ? y,u), (x,w),(y,v) ?
Equilance to local consistencies??
12
Inference Example (? 5)
(x,2),(x v y,2),(x v y v z,1), (x v y v z,1)
, (y,1)
NRES2
(x,2),(x v y,2),(x v y,1) , (y,1)
NRES1
(x,2),(x v y,1),(x,1), (y,1)
NRES0
(x,1),(?,1),(x v y,1), (y,1)
MPE
MP
NRES0
(?,2),(x v y,1)
(x v y,1),(?,1),(y,1),(y,1)
13
Future Work
  • Extend our weigthed logic framework.
  • Extend Modus Ponens to n-ary clauses (not only
    binary)..
  • Apply n-ary rules to generic weighted CSP.

Federico Heras Viaga fheras_at_lsi.upc.edu Javier
Larrosa Bondia larrosa_at_lsi.upc.edu Universitat
Politècnica de Cataunya, UPC, Spain
Write a Comment
User Comments (0)
About PowerShow.com