Title: Quantum Computing with Trapped Atomic Ions
1Quantum Computing with Trapped Atomic Ions
Garching
Boulder
- APS March Meeting - Montréal March 21, 2004
- Brian King
- Dept. Physics and Astronomy, McMaster University
- http//physserv.mcmaster.ca/kingb/King_B_h.html
2Outline
- building quantum computers
- overview of ion trap quantum information
processor - ion trapping
- initialization and detection
- single-qubit gates (internal)
- coupling internal and external qubits
- directions for the future...
3Building Quantum Computers
- Need
- qubits
- two-level quantum systems
- superpositions ? isolated from outside world
- confined, characterizable, scalable
- preparation
- prepare computer in standard start state
- read-out
- logic gates
- controllable interactions with outside world!
- single- and two-qubits gate sufficient (not nec.!)
4Why atomic qubits?
- unparallelled persistence of quantum
superposition
- atomic clocks - accuracy, precision
- control over quantum states - internal and
external
- BEC, Fermi degeneracy (controllable), Mott
insulator transition, quantum squeezing, quantum
state engineering...
- atomic ions - demonstration of building blocks
for scalable quantum computer architecture
the Devil is in the details...
the Devil is in the details...
5Trapped-Ion QC (Cirac, Zoller('95))
- a collection (string) of trapped atomic ions
- qubits (1) internal atomic levels
- quantum memory
- tdecoh À tgate
- T2 gt 10 min.
- clocks
- accuracy, stability
- gt 1/1015
6How it works...
- A quantum logic gate between 2 different ions
- prepare qubits using single-qubit gates
- map qubit i state to motion with lasers
- 2-qubit gate between motion and ion j
- put information from motion back into ion i
i
j
7Dynamical RF trapping
- want to confine charged atoms ? E fields!
- Eherenfest/Gauss ? cant use static fields
? use oscillating fields!
8Dynamical RF trapping
- full solution Mathieu equation (same results...)
- quantum harmonic oscillator
- wavepackets breathe at ?T
9Linear Ion Traps for QC
- axial confinement - static!
U0
U0
V0,W
V0,W
- F(z) (mwz2/2q) (z2/2)
- wz22aqU0/m a 1 (geom.)
- radial confinement -dynamic!
- F(r) (m/2q) (wr2 - wz2/2) (r2)
- wr2 q2V02/(2mWRFb4r4) b 1 (geom.)
- wr lt WRF
- micromotion small, at different freq.
10Ion Traps - initial micromachining
- DC U0 10 V
- RF V0 750 V
- ? 230 MHz
- ? wHO 10 MHz
- pressure lt 210?11 torr
- single ion lifetime gt 10 h.
- (cryogenic ? up to 100 days...)
11Ion Motion in Trap
- single ion
- like a mass on a spring
12Dirty little secrets - motional heating
- after cooling to the ground state of motion, the
ion heats back up!
- timescale for motional manipulation 10 ?s
- 0? ? 1? in 100 ?s (1998...)
- motion only sensitive to noise spectrum near ?mot
- fluctuating patch potentials?
- heating scales strongly with trap size 10 ? 4
- heating seems related to atom source ? shield
trap!
Q.A. Turchette et al. Phys. Rev. A 62, 053807,
2000.
- 21st century NIST lt 1 /(4 ms)
- IBM 1/(10 ms)
- Innsbruck 1/(190 ms)
- plus sympathetic cooling (multi-species...)
13Internal-State Qubits
- long-lived electronic states
Ca, Sr, Ba, Hg
199Hg Qmeas 1.61014 _at_ 282 nm
14Internal-State Qubits
- ground-state hyperfine levels
Be (313 nm), Mg (280 nm), Cd (215 nm)
P3/2
g/2p 19 MHz t 8 ns
P1/2
313 nm
?1?
9Be Qmeas 3.41011 _at_ 303 MHz 173Yb Qmeas
1.51013
1.25 GHz
S1/2
?0?
Be
15State preparation
- electronic
- optical qubit - kT ? free!
- hyperfine qubit optical pumping
- vibrational Doppler sideband laser cooling
16Single-qubit logic gate
17Coupling qubit levels
- oscillating field induces dipole moment
- HI ? m E0 ei(kz - wLt)
- can change electronic level
- (resonance?)
- if ion vibrates, interaction strength modulated
- HI ? m E0 ei(kz0 cos(wzt)- wLt)
- Quantum HI ? ½mE0 (S S-) ei(kz0 (a a)-
wLt) - W (S S-) ei(h (a a)- wLt)
- can change motion!
- (k z0?nvib z0 / l ?nvib) (... and
resonance...)
18CZ Realized
- motion-dependent spin transitions (conditional
logic)
1ñm
?ñº 1ñe
0ñm
1ñm
ñº 0ñe
1ñm
0ñm
auxñ
0ñm
19CZ Realized - a two-ion logic gate!
F. Schmidt-Kaler, et al., Nature 422, 408 (2003)
- two 40Ca ions - CZ scheme
- but no aux? needed...
theoretical
measured F 70
20CZ Realized - a two-ion logic gate!
- doesnt use aux? - uses clever NMR trick!
2ñm
1ñm
?ñº 1ñe
0ñm
use (p,x) (p/?2,y) (p,x) (p/?2,y)
1ñm
ñº 0ñe
0ñm
21Scaling up
- problem
- as Nions ?
- ion string gets heavier ? gates get slower!
- more motional modes ? greater noise
R. DeVoe, PRA 58, 910 (98) J.I. Cirac, et al. PRL
78, 3221 (97)
22Solutions (1) - optical
- MPQ, Garching (Ca) 4 2S1/24 2P1/2
- G.R. Guthöhrlein, et al., Nature 414 (01)
res. l/10
- U. Innsbruck (Ca) 4 2S1/23 2D5/2
- A.B. Mundt, et al., quant-ph/0202112
red shift
blue shift
- sweep PZT
- Þ Doppler shift
- Pex. gt 0.5 Þ coherent
- positioning
- node/antinode
- res. l/100
- differential coupling to motional sidebands
23Scaling up
- problem
- as Nions ?
- ion string gets heavier ? gates get slower!
- more motional modes ? greater noise
- quantum CCD
- Wineland, et al. J. Res. NIST 103, 259 (98)
- D. Kielpinski, et al. Nature 417, 709 (02)
24Solutions (2) - physical multiplexing
M. Rowe, et al., Quantum Information and
Computation 1, x (01).
- transporting ions between traps
(1) Ramsey interferometer
- no transport 96.8 0.3 contrast
- line triggered 96.6 0.5 contrast!
- 60 Hz fields...
spin echo 96 contrast
(2) separating ions
Dn200 quanta (2.9 MHz) for 10 ms sep.
time (separation electrode too wide!)
95 sep. eff. (5000 shots)
25Solutions (2) - physical multiplexing
- easily micro-machined, smooth
26Ion Trap QC Wither thou?...
- single-qubit logic gates (40s) (gt98 fidelity)
- single-ion 2-qubit logic gate (95) (80
fidelity) - C. Monroe et al. Phys. Rev. Lett. 75, 4714
(95). - 2-ion 2-qubit logic gates ? 2 (80 / 97
fidelity) - Gulde et al. Nature 422, 408 (03).
- Leibfried et al. Nature 422, 412 (03).
- Deutsch-Jozsa algorithm
- Gulde et al. Nature 421, 48 (03).
- state preparation (fidelity gt 98)
- spin qubit t / tgate gt 1000
- motional data bus/qubit
- heating lt 1/(4, 10, 190 ms) (NIST, IBM, Innsbruck)
NIST Boulder, MPQ, IBM Almaden, U. Innsbruck,
Oxford, U. Michigan, McMaster
http//physserv.mcmaster.ca/kingb/King_B_h.html
27References
- Cirac Zoller New Frontiers in Quantum
Information With Atoms and Ions, Physics Today
57, 3, 38 (March '04). - Steane Appl. Phys. B 64 , 623 ('97).
- Ghosh Ion Traps, (Clarendon Press, '97),
ISBN 0198539959. - Leibfried et al. Quantum dynamics of single
trapped ions, Rev. Mod. Phys. 75, 281 ('03). - Wineland, et al. Quantum information processing
with trapped ions, Phil. Trans. Royal Soc.
London A 361, 1349, ('03). - Wineland, et al., Experimental Issues in
Coherent Quantum-State Manipulation of Trapped
Atomic Ions, J. Research NIST 103, 259 ('98). - Monroe, et al. Experimental Primer on the
Trapped Ion Quantum Computer, Forschr. Physik
46, 363 ('98). - http//jilawww.colorado.edu/pubs/recent_theses/
- D. Kielpinski, Entanglement and Decoherence in a
Trapped-Ion Quantum Register - B.E. King, Quantum State Engineering and
Information Processing withTrapped Ions
28Nobel Sidebar - Ramseys expt.
- superpositions - how do we characterize phase?
t
292 is better than one!...
D. Leibfried, et al., Nature 422, 412 (2003)
- spin-dependent motional Berrys phase
- 2 lasers with dwL ? 0 create standing wave
- dipole force
302 is better than one!...
- resonant oscillating force displacement
operator in phase space
- a set by strength of force
- phase set by phase between motion and lasers
312 is better than one!...
- stretch mode
- need different force on each ion to drive
- can only excite if ions in different electronic
levels! - move ions in closed loop in phase space
walking standing wave has different strengths
for ?,?
322 is better than one!...
- IF ions in different electronic states, move
quantum motional state in closed loop in phase
space - ? motional Berrys phase ? phase shift
- ???????Y? ???????? Y ?
- ??????? Y ? ? eip/2??????? Y ?
- ??????? Y ? ? eip/2 ??????? Y ?
- ??????? Y ? ???????? Y ?
- e-ip (eip/2 ???) ( eip/2???)? Y ?
- controlled-Phase single-qubit rotations (F
97)
33and some 2s are better than others
in the lab
- 2-qubit gates utilize the motion
- gt cough, cough, mumblelt
- higher motional n gives faster gates
- ?? shining laser on only one ion!
- Motional gates (Mølmer-Sørensen, Milburn, etc.)
can be done illuminating all ions! - - keep n high ? fast motional gates
- - with expt. gate, can have different
illuminations - single-qubit operations can be done with weak
trap - the accordion quantum computer!
34Coupling qubit levels
- laser-ion interaction messy details
- rotating-wave approximation