Bulk Spin Resonance Quantum Information Processing - PowerPoint PPT Presentation

About This Presentation
Title:

Bulk Spin Resonance Quantum Information Processing

Description:

Scaling: time (1 ns/ft), space (DNA computers mass of the planet) ... Enabindex must all be 1, else choose the classical addend to be zero. ... – PowerPoint PPT presentation

Number of Views:79
Avg rating:3.0/5.0
Slides: 33
Provided by: yaelma
Category:

less

Transcript and Presenter's Notes

Title: Bulk Spin Resonance Quantum Information Processing


1
Bulk Spin Resonance Quantum Information Processing
Yael Maguire Physics and Media Group (Prof. Neil
Gershenfeld) MIT Media Lab
ACAT 2000 Fermi National Accelerator Laboratory,
IL 17-Oct-2000
2
Why should we care?
  • By 2030 transistor 1 atom, 1 bit 1
    electron, Fab cost GNP of the planet
  • Scaling time (1 ns/ft), space (DNA computers ?
    mass of the planet).
  • Remaining resource Hilbert Space.

3
Bits
  • Classical bit
  • Analog bit
  • Quantum qubit

4
More Bits
  • 2 Classical Bits
  • 2 Quantum Bits
  • N Classical Bits
  • N binary values
  • N Quantum Bits
  • 2N complex numbers
  • superposition of states
  • Hilbert space

5
Entanglement
  • correlated decay
  • project A
  • hidden variables?
  • action at a distance?
  • information travelling back in time?
  • alternate universes (many worlds)?
  • interconnect in Hilbert space O(2-N) to O(1)

AB
6
The Promise
  • Examples
  • Shors algorithm (1000 bit number)
  • O((logN)2?) vs. O(exp(1.923(logN)1/3(loglogN)2/3
    )
  • O(1 yr) _at_ 1Hz vs. O(107 yrs) _at_ 1 GFLOP
  • Grovers algorithm (8 TB)
  • O( ) vs. O(N)
  • 27 min. vs. 1 month _at_ same clock speed.

7
What do you need to build a quantum computer?
  • Pure States
  • Coherence
  • Universal Family
  • Readout
  • Projection Operators
  • Circuits

8
Previous/Current Attempts
  • spin chains quantum dots
  • isolated magnetic spins trapped ions
  • Optical photons cavity QED
  • Coherence!
  • Breakthroughs
  • Bulk thermal NMR quantum computers
  • quantum coherent information ? bulk thermal
    ensembles
  • Quantum Error Correction
  • Correct for errors without observing.
  • Add extra qubits ? syndrome

9
What do you need to build a quantum computer
using NMR?
Gershenfeld, Chuang, Science (1997) Cory, Havel,
Fahmy, PNAS (1997)
  • Pure States
  • effective pure states in deviation density matrix
  • Coherence
  • nuclear spin isolation, 1-10s
  • Universal Family
  • arbitrary rotations (RF pulses) and C-NOT
    (spin-spin interactions)
  • Readout
  • Observable magnetization
  • Projection Operators
  • Change algorithms
  • Circuits
  • Multiple pulses are gates

10
Quantum Mechanics
  • wave function
  • observables
  • pure state
  • mixed state
  • Hamiltonian (energy)
  • evolution
  • equilibrium

11
Bulk Density Matrix
B0
B1
  • 1023 spin degrees of freedom
  • rapid tumbling averages inter-molecular
    interactions
  • N effective degrees of freedom
  • decoherence averages off-diagonal coherences

N spins I (1/2)
12
Deviation Density Matrix in NMR
NMR reduced density matrix
  • high temperature approximation
  • identity can be ignored
  • ensemble Fmolecule Fdeviation

13
Spin Hamiltonian
  • magnetic moment
  • angular momentum
  • spin precession
  • Zeeman splitting
  • 2 spin interaction Hamiltonian

A-B
14
Magnetic Field and Rotation Operators
  • apply a z field
  • evolve in field
  • two spins, scalar coupling
  • evolution 3 commuting operators

Arbitrary single qubit operations
15
The Controlled-NOT Gate
  • ENDOR (1957)
  • electron-nuclear double resonance
  • INEPT (1979)
  • insensitive nuclei enhanced by polarization
    transfer

16
The Controlled-NOT Gate
Input thermal density matrix
CNOT output
17
Ground State Preparation
  • We want where
  • How? Use degrees of freedom to create an
    environment for computational spins.
  • 1. Logical Labeling (Gershenfeld, Chuang)
  • ancilla spins - submanifolds act as pure states -
    exponential signal
  • 2. Spatial Labeling (Cory, Havel, Fahmy)
  • field gradients dephase density matrix terms -
    exponential space
  • 3. Temporal Labeling (Knill, Chuang, Laflamme)
  • use randomization and averaging over set of
    experiments - exponential time

18
Algorithms - Grovers Algorithm
  • find xn f(xn) 1, f(xm)0
  • Initialize L bit registers
  • Prepare superposition of states
  • Apply operator that rotatesphase by p if f(x)
    1
  • Invert about average
  • Repeat O(N1/2) times
  • Measure state

19
NMR Implementation
  • Pure state preparation
  • Superposition of all statesH RyA(90) RyB(90) -
    RxA(180) RxB(180)
  • Conditional sign flip (test for both bits up) C
    RzAB(270) - RzA(90) - RzB(90)
  • Invert-about-mean M H - RzAB(90) - RzA(90) -
    RzB(90) - H

20
Experimental Implementation of Fast Quantum
Searching, I.L. Chuang, N. Gershenfeld, M.
Kubinec, Physical Review Letters (80), 3408
(1998).
21
Quantum Error Correction
  • 3-bit phase error correcting code - Cory et al,
    PRL, 81, 2152 (1998) - alanine

22
Quantum Simulation
  • Feynman/Lloyd - quantum simulations more
    efficient on a quantum computer
  • Waugh - average Hamiltonian theory
  • Dynamics of truncated quantum harmonic oscillator
    with NMR- Samaroo et al. PRL, 82, 5381.

23
Scaling Issues
  • Sensitivity vs. System resources
  • Decoherence per gate
  • Number of qubits

24
Scaling
25
Scaling
is separable if
  • Is it quantum? Schack, Caves, Braunstein,
    Linden, Popescu,
  • Initial conditions vs quantumevolution
  • But, Boltzmann limit is not scalable

26
Polarization Enhancement - Optical Pumping
  • Error correction as well (or phonon)

27
Decoherence per gate
  • Steady state error correction - 10-4 - 10-6

C. Yannoni, M. Sherwood, L. Vandersypen, D.
Miller, M. Kubinec, I. Chuang, Nuclear Magnetic
Resonance Quantum Computing Using Liquid Crystal
Solvents quant-ph/9907063, July 1999
28
Number of Qubits
  • Seth Lloyd, Science, 261, 1569 (1993) - SIMD CA
  • D-A-B-C-A-B-C-A-B-C....
  • at worst linear, but may be polylogarithmic
  • Shulman, Vazirani (quant-ph/980460) - using SIMD
    CA
  • can distill qubits where SNR independent of
    system size

29
Our goals
  • Develop the instrumentation and algorithms needed
    to manipulate information in natural systems
  • Table-Top (size cost)
  • investigate scaling issues

500,000
50,000
5,000
30
Magnet Design
  • Halbach arrays using Nd2Fe14B 1.2T ? 2.0T
  • Fermi Lab - iron is a good spatial filter

31
Compilation
  • Multiplexed Add
  • function program madd(cnumif0, cnumif1,
    enabindex, selindex, inputbits, outputbits,
  • BOOLlowisleft) outputbits MUST be zeros
  • madd.m
  • Implements adding a classical number to a
    quantum number, mod 2L.
  • If N is the thing we want to factor, then
    selindex says whether N-cnum is less than or
  • greater than B N-cnumgtb --gt add cnum, else
    N-cnumltb --gt add cnum - N 2L
  • Enabindex must all be 1, else choose the
    classical addend to be zero.
  • Edward Boyden, e_at_media.mit.edu
  • INPUT
  • cnum classical number to be added
  • indices column vector of indices on which to
    operate
  • carryindex carry qubit that you're using
  • L length(outputbits) It's an L-bit adder
    contains L-1 MUXFAs and 1 MUXHA
  • if (L!length(inputbits)) MAKE SURE OF THIS!
  • program 'Something''s wrong.'
  • return

Can you implement? gcc grover.c -o chloroform
32
Nature is a Computer
IBM Dr. Isaac Chuang Dr. Nabil Amer MIT
Prof. Neil Gershenfeld Prof. Seth Lloyd U.C.
Berkeley Prof. Alex Pines Dr. Mark
Kubinec Stanford Prof. James Harris Prof.
Yoshi Yamamoto
Write a Comment
User Comments (0)
About PowerShow.com