Title: Cloning Simulation Project
1 Cloning Simulation Project
Group F
Cloning of DexA Towards the degradation of
Dental Plaque
2Group members
Kadi Tiong Mohd Hafizi Mansor Lye Kheng Yong Mohd
Nor Azim Ab Patar Murni Mohd Hanafi Zaid Nor
Azreen Zulkafli Nur Hafiza Md. Yusop Nur Shila
Mohamed Nor
Group F
3Cloning of DexA Towards degradation of Dental
Plaque
4OBJECTIVES
- To understand the concept of molecular biology
and biotechnology introduced in GTB 204/3
Molecular Biology Technique. - To obtain the experiences in cloning strategy
through simulation - To expose ourselves to the finding from the
concerned website and analysis the information
that we get and organize our work so that to get
our final product.
5INTRODUCTION
- Dental plaque,
- the bacterial film adherent to tooth surfaces,
- is composed of closely packed bacteria and
non-cellular material. - lead to Dental caries - demineralization of the
tooth surface cause by bacteria - also known as tooth decay and is commonly called
cavities. - If decay is allowed to spread, it may penetrate
the root and enter the pulp chamber, causing an
abscess
6How to remove Dental Plaque?
- Enzymes produced by Lipomyces starkeyi, that
hydrolyze the ?-1, 3, ? -1, 4 and ? -1, 6
linkages in the glucans, have recently been
tested. -
- Although these enzymes have been effective,
their practical application on humans is not
possible because L. starkeyi is a potential
pathogen.
7Dental plaque formation
8Why Dextranase?
- For alternative , commercial enzyme preparations
called Dextranase were chosen - In view of their potential use as dental plaque
control agent and as adjuncts to brushing and
flossing for the removal of plaque and control of
gingivitis. - To verify the possibility of reducing or
preventing such glucan formation, enzyme
dextranase produced by the genus Penicillium were
chosen for prevention.
9Why Dextranase ?
- In the concentration range 3.7510-21.510-1
U/l, was capable of blocking in vitro synthesis
of the glucans catalyzed by glucosyltransferases
of Streptococcus sobrinus. - With small amounts of the enzyme, a limited
production of glucans was observed, but the
synthesized polysaccharides showed no adhesive
properties.
10Why Dextranase ?
- Dextranase was also able to degrade partially
(about 20) pre-synthesized glucans. - The stability characterization of the enzymes
Dextranase in commercial mouthwash without
ethanol and at physiological temperature (37C)
showed that it is possible to use Dextranase as a
dental plaque control agent. - Beside that, enzymes Dextranase are stable at
pH 6.0 and up to 40C. This enzyme
preferentially cleaves the a-1, 6 linkages of
dextran.
11(No Transcript)
12 Hunt for gene
- First of all, our group has come across an
article at http//www.sciencedirect.com that
talks about the degradation of dental plaque
glucans by a type of enzymes called Dextranase. - Then, we try to search of the enzyme sequence
through the GenBank website at http//www.ncbi.nlm
.nih.gov . - .
13Cont
- We have used various keywords for the purpose of
searching the compatible DNA sequence of our
enzyme, such as dextranase and penicillium
funiculosum (organism that produce the dextranase
enzymes).
14 Get the gene sequence from Genbank
- After long time of searching through the gene
bank, we finally successfully obtain the gene
sequence that code for the enzyme dextranase. -
- The gene sequence is from an organism called
Penicillium funiculosum. - The accession number for this gene sequence is
AJ272066 and it consists of 1851 base pairs.
15The nucleotide sequence of gene of interest gene
is
- 1 atggccacaa tgctaaagct acttgcgttg acccttgcaa
ttagcgagtc cgccattgga - 61 gcagtcatgc acccacctgg cgtttctcat cccggtaccc
atacgggcac tacgaataat - 121 acccattgcg gcgccgactt ctgtacctgg tggcatgatt
caggggagat caacacgcag - 181 acacctgtcc aaccagggaa cgtgcgccaa tctcacaagt
attccgtgca agtgagtcta - 241 gctggtacaa acaactttca tgactccttt gtatatgaat
cgatcccccg gaacggaaat - 301 ggtcgcatct atgctcccac cgatccatcc aacagcaaca
cattagattc aagcgtggat - 361 gatggaatct cgattgagcc tagtatcggc ctcaatatgg
catggtccca attcgagtac - 421 agccaggatg tcgatataaa gatcctggca actgatggct
catcgttggg ctcaccaagt - 481 gatgttgtta ttcgccccgt ctcaatctcc tatgcgattt
ctcagtccaa cgatggcggg - 541 attgtcatcc gggtcccagc cgatgcgaac ggccgcaaat
tttcagtcga attcaaaaat - 601 gacctgtaca ctttcctctc tgatggcaac gagtacgtca
catcgggagg tagcgtcgtc - 661 ggcgttgagc ctaccaacgc acttgtgatc ttcgcaagtc
cgtttcttcc ttctggcatg
16721 attcctcata tgaaacccca caacacgcag accatgacgc
caggtcctat caataacggc 781
gactggggcg ccaagtcaat tctttacttc ccaccaggtg
tatactggat gaaccaagat 841 caatcgggca
actcgggtaa attaggatct aatcatatac gtctaaactc
gaacacttac 901 tgggtctacc ttgcccccgg
tgcgtacgtg aagggtgcta tagagtattt caccaagcaa
961 aacttctatg caactggtca tggtgtccta tcaggtgaaa
actatgttta ccaagccaat 1021 gctggcgaca
actatgttgc agtcaagagc gattcgacca gcctccggat
gtggtggcac 1081 aataaccttg ggggtggtca
aacatggtac tgcgttggcc cgacgatcaa tgcgccacca
1141 ttcaacacta tggatttcaa tggaaattct ggcatctcaa
gtcaaattag cgactataag 1201 caggtgggag
ccttcttctt ccagacggat ggaccagaaa tctatcccaa
tagtgtcgtg 1261 cacgacgtct tctggcacgt
caatgatgat gcaatcaaaa tctactattc gggagcatct
1321 gtatcgcggg caacgatctg gaaatgtcac aatgacccaa
tcatccagat gggatggaca 1381 tctcgggata
tcagtggagt gacaatcgac acattaaatg ttattcacac
ccgctacatc 1441 aaatcggaga cggtggtgcc
ttcggctatc attggggcct ctccattcta tgcaagtggg
1501 atgagtcccg attcaagcaa gtccatatcc atgacggttt
caaacgttgt ttgcgagggt 1561 ctttgcccgt
ccctgttccg catcacaccc ctacagaact acaaaaattt
tgttgtcaaa 1621 aatgtggctt tcccagatgg
gctacagaca aatagtattg gcacaggaga aagcattatt
1681 ccagccgcat ctggtctaac gatgggacta aatatctcca
gctggactgt tggtggacaa 1741 aaagtgacaa
tggagaactt tcaagccaat agcctggggc agttcaatat
tgacggcagc 1801 tattgggggg agtggcagat
tagtcgaatt tccagctctc agagcgcgtg aÂ
The nucleotide sequence of gene of interest gene
is
17Look for the Open Reading Frame (ORF)
- Open Reading Frame (ORF) is a DNA sequence that
containing series of codons, which can be
translatable into protein. - ORF starts with a start codon (ATG) and ends with
a stop codon (TGA, TAG or TAA). - Within the start codon and stop codon,
containing the actual sequence that code for a
polypeptide/protein. For the gene that code for
the enzyme dextranase, the ORF can be defined by
accessing through the website - http//www.ncbi.nlm.nih.gov/gorf/gorf.html.
-
18Cont.
- Within this website, there is a tool which helps
us to search for the ORF within the interest
gene, the ORF finder. - The ORF finder is an analysis tool which help to
find all the ORF within the users selected gene
sequence. - The gene bank accession number for dexA gene
AJ272066 is entered and the analysis is performed.
19Purpose of Doing ORF Analysis
- To confirm that the dexA gene sequence can
exactly be translatable into expected functional
protein. - To know the length of the frame needed in this
cloning process.
20Result from the ORF analysis
21 1 atggccacaatgctaaagctacttgcgttgacccttgcaatt
agc
M A T M L K L L A L T L A I
S
46 gagtccgccattggagcagtcatgcacccacctggcgtttct
cat
E S A I G A V M H P P G V S
H
91 cccggtacccatacgggcactacgaataatacccattgcggc
gcc
P G T H T G T T N N T H C G
A
136 gacttctgtacctggtggcatgattcaggggagatcaacacg
cag
D F C T W W H D S G E I N T
Q
181 acacctgtccaaccagggaacgtgcgccaatctcacaagtat
tcc
T P V Q P G N V R Q S H K Y
S
226 gtgcaagtgagtctagctggtacaaacaactttcatgactcc
ttt
V Q V S L A G T N N F H D S
F
271 gtatatgaatcgatcccccggaacggaaatggtcgcatctat
gct
V Y E S I P R N G N G R I Y
A
316 cccaccgatccatccaacagcaacacattagattcaagcgtg
gat
P T D P S N S N T L D S S V
D
361 gatggaatctcgattgagcctagtatcggcctcaatatggca
tgg
D G I S I E P S I G L N M A
W
406 tcccaattcgagtacagccaggatgtcgatataaagatcctg
gca
S Q F E Y S Q D V D I K I L
A
451 actgatggctcatcgttgggctcaccaagtgatgttgttatt
cgc
T D G S S L G S P S D V V I
R
496 cccgtctcaatctcctatgcgatttctcagtccaacgatggc
ggg
P V S I S Y A I S Q S N D G
G
541 attgtcatccgggtcccagccgatgcgaacggccgcaaattt
tca
I V I R V P A D A N G R K F
S
586 gtcgaattcaaaaatgacctgtacactttcctctctgatggc
aac V E F K N D L Y T F
L S D G N
22 631 gagtacgtcacatcgggaggtagcgtcgtcggcgttgagcct
acc
E Y V T S G G S V V G V E P
T
676 aacgcacttgtgatcttcgcaagtccgtttcttccttctggc
atg
N A L V I F A S P F L P S G
M
721 attcctcatatgaaaccccacaacacgcagaccatgacgcca
ggt
I P H M K P H N T Q T M T P
G
766 cctatcaataacggcgactggggcgccaagtcaattctttac
ttc
P I N N G D W G A K S I L Y
F
811 ccaccaggtgtatactggatgaaccaagatcaatcgggcaac
tcg
P P G V Y W M N Q D Q S G N
S
856 ggtaaattaggatctaatcatatacgtctaaactcgaacact
tac
G K L G S N H I R L N S N T
Y
901 tgggtctaccttgcccccggtgcgtacgtgaagggtgctata
gag
W V Y L A P G A Y V K G A I
E
946 tatttcaccaagcaaaacttctatgcaactggtcatggtgtc
cta
Y F T K Q N F Y A T G H G V
L
991 tcaggtgaaaactatgtttaccaagccaatgctggcgacaac
tat
S G E N Y V Y Q A N A G D N
Y
1036 gttgcagtcaagagcgattcgaccagcctccggatgtggtgg
cac
V A V K S D S T S L R M W W
H
1081 aataaccttgggggtggtcaaacatggtactgcgttggcccg
acg
N N L G G G Q T W Y C V G P
T
1126 atcaatgcgccaccattcaacactatggatttcaatggaaat
tct
I N A P P F N T M D F N G N
S
1171 ggcatctcaagtcaaattagcgactataagcaggtgggagcc
ttc
G I S S Q I S D Y K Q V G A
F
1216 ttcttccagacggatggaccagaaatctatcccaatagtgtc
gtg F F Q T D G P E I Y
P N S V V
23 1261 cacgacgtcttctggcacgtcaatgatgatgcaatcaaaatc
tac
H D V F W H V N D D A I K I
Y
1306 tattcgggagcatctgtatcgcgggcaacgatctggaaatgt
cac
Y S G A S V S R A T I W K C
H
1351 aatgacccaatcatccagatgggatggacatctcgggatatc
agt
N D P I I Q M G W T S R D I
S
1396 ggagtgacaatcgacacattaaatgttattcacacccgctac
atc
G V T I D T L N V I H T R Y
I
1441 aaatcggagacggtggtgccttcggctatcattggggcctct
cca
K S E T V V P S A I I G A S
P
1486 ttctatgcaagtgggatgagtcccgattcaagcaagtccata
tcc
F Y A S G M S P D S S K S I
S
1531 atgacggtttcaaacgttgtttgcgagggtctttgcccgtcc
ctg
M T V S N V V C E G L C P S
L
1576 ttccgcatcacacccctacagaactacaaaaattttgttgtc
aaa
F R I T P L Q N Y K N F V V
K
1621 aatgtggctttcccagatgggctacagacaaatagtattggc
aca
N V A F P D G L Q T N S I G
T
1666 ggagaaagcattattccagccgcatctggtctaacgatggga
cta
G E S I I P A A S G L T M G
L
1711 aatatctccagctggactgttggtggacaaaaagtgacaatg
gag
N I S S W T V G G Q K V T M
E
1756 aactttcaagccaatagcctggggcagttcaatattgacggc
agc
N F Q A N S L G Q F N I D G
S
1801 tattggggggagtggcagattagtcgaatttccagctctcag
agc
Y W G E W Q I S R I S S S Q
S
1846 gcgtga 1851
A
24- The whole gene sequence (1 frame) is chosen for
the expression of the dextranase enzyme. - 1 frame starts from base pair 1 and ends at
base pair 1850 which has the length of 1851
basses. - The reading frame that is used determines which
amino acids that will be encoded by a gene.
25Determination of Amino Acids Sequence Molecular
Weight
- We have done the translation of the interest gene
sequence to amino acids sequence. - By using the Bioedit software.
26Results
27(No Transcript)
28(No Transcript)
29Analysis of the sequence
- Length 1851 bp
- 1 amino acids 3 base pair 110 Dalton
- For 1851 bp,
- there would be 1851 / 3 617 amino acid
- Molecular weight of the dextranase
- 1851 / 3 x 110 Dalton
- 617 x 110 Dalton 67870 Dalton
- approximately 67 kDa
30Look for the restriction enzyme sites
- Restriction Enzyme (RE)
- - A type of protein that help to recognize
specific short nucleotide sequence. - - It cut the DNA in a specific site that
recognized by the RE mentioned above.
31Analysis of the restriction enzymes for the dexA
gene
- To determine the restriction enzyme that is able
to to cut the gene of interest that has been
used. - Go to the website http//www.firstmarket.com/cut
ter/cut2.html
32Results
Â
Penicillium funiculosom
1851 base pairs
Graphic map Table by enzyme name BalI
MluNI
CfrI
HindII
atggccacaatgctaaagctacttgcgttgaccctt
gcaattagcgagtccgccattggagcagtcatgcaccca base
pairstaccggtgttacgatttcgatgaacgcaactgggaacgttaatc
gctcaggcggtaacctcgtcagtacgtgggt 1 to 75 EaeI
HincII
MscI
AccB1I
AccB1I BbiII BbeI
Asp718I
Eco64I Hsp92I Bsp143II Acc65I
BsrDI Hin1I EheI
SexAIcctggcgtttctcatcccggtacccatacgggcactacgaataa
tacccattgcggcgccgacttctgtacctgg base
pairsggaccgcaaagagtagggccatgggtatgcccgtgatgcttatt
atgggtaacgccgcggctgaagacatggacc 76 to 150
Eco64I
KasI Msp17I HaeII BanI KpnI
BanI NarI BsaHI
BshNI
BshNI AcyI BstH2I
PshAI
tggcatgattcaggggagatcaacacgcagacacctgtccaaccagg
gaacgtgcgccaatctcacaagtattcc base
pairsaccgtactaagtcccctctagttgtgcgtctgtggacaggttgg
tcccttgcacgcggttagagtgttcataagg 151 to 225
BspXI Bsp106I
BspDI BscI
BspHI ClaI BseCI
gtgcaagtgagtctagctggtacaaacaactttcatgactcctttgtat
atgaatcgatcccccggaacggaaat base
pairscacgttcactcagatcgaccatgtttgttgaaagtactgaggaa
acatatacttagctagggggccttgccttta 226 to 300
RcaI
BanIII
Bsu15I
Bsa29I
33 ggtcgcatctatgctcccacc
gatccatccaacagcaacacattagattcaagcgtggatgatggaatctc
gatt base pairsccagcgtagatacgagggtggctaggtagg
ttgtcgttgtgtaatctaagttcgcacctactaccttagagctaa
301 to 375
MflI
BstX2I gagcctagtatcggcctcaatatggcatgg
tcccaattcgagtacagccaggatgtcgatataaagatcctggca
base pairsctcggatcatagccggagttataccgtaccagggttaag
ctcatgtcggtcctacagctatatttctaggaccgt 376
to 450
XhoII
BstYI
FriOI
BanII DraIII Esp3I
actgatggctcatcgttgggctcaccaagtgat
gttgttattcgccccgtctcaatctcctatgcgatttctcag
base pairstgactaccgagtagcaacccgagtggttcactaca
acaataagcggggcagagttagaggatacgctaaagagtc 451 to
525 Eco24I
BsmBI
BsaBI Psp5II EclXI BstMCI
MamI EcoO109I
BstZI BsaOI ApoI
BsrBRI DraII CfrI Eco52I
EcoRI tccaacgatggcgggattgtcatccgggtcccagccga
tgcgaacggccgcaaattttcagtcgaattcaaaaat base
pairsaggttgctaccgccctaacagtaggcccagggtcggctacgctt
gccggcgtttaaaagtcagcttaagttttta 526 to 600
Bsh1365I EagI
BsiEI ApoI AcsI
Bse8I PpuMI EaeI Bsh1285I
XmaIII AcsI
Bsp1407I
BsrGI
gacctgtacactttcctctctgatggcaacgagtacg
tcacatcgggaggtagcgtcgtcggcgttgagcctacc base
pairsctggacatgtgaaaggagagactaccgttgctcatgcagtgtag
ccctccatcgcagcagccgcaactcggatgg 601 to 675
SspBI
34 FauNDI aacgcacttgtgatcttcgca
agtccgtttcttccttctggcatgattcctcatatgaaaccccacaacac
gcag base pairsttgcgtgaacactagaagcgttcaggcaaagaag
gaagaccgtactaaggagtatactttggggtgttgtgcgtc 676 to
750
NdeI
BbiII
AhdI Psp5II BshNI AcyI BstH2I
AcyI AspEI PpuMI
BanI NarI EheI XcmI
Hin1I EclHKI KasI Msp17I HaeII
SexAI AccIaccatgacgccaggtcctatcaataacggcg
actggggcgccaagtcaattctttacttcccaccaggtgtatac base
pairstggtactgcggtccaggatagttattgccgctgaccccgcggtt
cagttaagaaatgaagggtggtccacatatg 751 to 825
Msp17I DraII Eco64I Hsp92I
DraIII Hsp92I EcoO109I
AccB1I BbiII BbeI Bst11
BsaHI Eam1105I Hin1I BsaHI
Bsp143II
BcoI
Ama87I MflI
AvaI BstX2I
tggatgaaccaagatcaatcgggcaactcgggtaaattaggatc
taatcatatacgtctaaactcgaacacttac base
pairsacctacttggttctagttagcccgttgagcccatttaatcctag
attagtatatgcagatttgagcttgtgaatg 826 to 900
BsoBI XhoII
07I
Eco88I BstYI
Pfl23II
SunI
AccI
BsiWI BstSFI
tgggtctaccttgcccccggtgcgtacgtgaagggtgctatagag
tatttcaccaagcaaaacttctatgcaact base
pairsacccagatggaacgggggccacgcatgcacttcccacgatatct
cataaagtggttcgttttgaagatacgttga 901 to 975
SplI SfcI
PspLI
BsaAI
XcmI
ggtcatggtgtcctatcaggtgaaaactatgtttaccaagccaatgctg
gcgacaactatgttgcagtcaagagc base
pairsccagtaccacaggatagtccacttttgatacaaatggttcggtt
acgaccgctgttgatacaacgtcagttctcg 976 to 1050
35 BsaWI EcoT14I
BseAI
Kpn2I BssT1I
MroI AccIII Eco130I
gattcgaccagcctccgg
atgtggtggcacaataaccttgggggtggtcaaacatggtactgcgttgg
cccgacg base pairsctaagctggtcggaggcctacaccaccgtgt
tattggaacccccaccagtttgtaccatgacgcaaccgggctgc 1051
to 1125 Bsp13I StyI
BsiMI ErhI
BspEI
AcsI
atcaatgcgccaccattcaacactatggattt
caatggaaattctggcatctcaagtcaaattagcgactataag base
pairstagttacgcggtggtaagttgtgatacctaaagttacctttaag
accgtagagttcagtttaatcgctgatattc 1126 to 1200
ApoI
Bbv12I BbiII
Alw44I Msp17I Bbv16II BspMI
BstXI VneI AspHI
AcyI BpuAIcaggtgggagccttcttcttccagacggatggaccagaa
atctatcccaatagtgtcgtgcacgacgtcttctgg base
pairsgtccaccctcggaagaagaaggtctgcctacctggtctttagat
agggttatcacagcacgtgctgcagaagacc 1201 to 1275
ApaLI Hin1I AatII
Alw21I Hsp92I
BsiHKAI BsaHI BbsI
MslI
BcgI
cacgtcaatgatgatgcaatcaaaatctactattcgggagcatctg
tatcgcgggcaacgatctggaaatgtcac base
pairsgtgcagttactactacgttagttttagatgataagccctcgtag
acatagcgcccgttgctagacctttacagtg 1276 to 1350
BpiI
BsaBI Eco88I
MamI AvaI
MslI
BsrBRI BcoI EcoRV
aatgacccaatcatccagatgggatggacatctcgggatatcagtgg
agtgacaatcgacacattaaatgttatt base
pairsttactgggttagtaggtctaccctacctgtagagccctatagtc
acctcactgttagctgtgtaatttacaataa 1351 to 1425
Bsh1365I Eco32I
Bse8I Ama87I
BsoBI
36 AccB1I
Eco64I
Esp3I
DraII cacacccgctacatcaaatcg
gagacggtggtgccttcggctatcattggggcctctccattctatgcaag
tggg base pairsgtgtgggcgatgtagtttagcctctgccaccacg
gaagccgatagtaaccccggagaggtaagatacgttcaccc 1426 to
1500 BsmBI
EcoO109I
BanI
BshNI
MslI Psp1406I
atgagtcccgattcaagcaagtccatatccatgacgg
tttcaaacgttgtttgcgagggtctttgcccgtccctg base
pairstactcagggctaagttcgttcaggtataggtactgccaaagttt
gcaacaaacgctcccagaaacgggcagggac 1501 to 1575
BstSFI
AcsI
BstSFI ttccgcatcacacccctacagaactacaaaaattttgttgt
caaaaatgtggctttcccagatgggctacagaca base
pairsaaggcgtagtgtggggatgtcttgatgtttttaaaacaacagtt
tttacaccgaaagggtctacccgatgtctgt 1576 to 1650
SfcI ApoI
SfcI
MspA1I
GsuI
NspBIIaatagtattggcacaggagaaagcattattccagccgca
tctggtctaacgatgggactaaatatctccagctgg base
pairsttatcataaccgtgtcctctttcgtaataaggtcggcgtagacc
agattgctaccctgatttatagaggtcgacc 1651 to 1725
PvuII
BpmI
BstXI SspI
actgttggtggacaaaaagtgacaatggagaactttcaagccaata
gcctggggcagttcaatattgacggcagc base
pairstgacaaccacctgtttttcactgttacctcttgaaagttcggtt
atcggaccccgtcaagttataactgccgtcg 1726 to 1800
37The following endonucleases were selected but
don't cut this sequence
- AatI, Acc113I, Acc16I, AccB7I, AccBSI, AclNI,
AfeI, AflII, AflIII, AgeI, AlwNI, AocI, Aor51HI,
ApaI, AscI, AseI, AsnI, Asp700I, AspI, AtsI,
AviII, AvrII, BamHI, BbrPI, BbuI, BclI, BfrI,
BglI, BglII, BlnI, BlpI, Bpu1102I, Bpu14I, BsaI,
BsaMI, Bse118I, Bse21I, BsePI, BseRI, BsgI, BsiI,
BsmI, Bsp119I, Bsp120I, Bsp1720I, Bsp19I,
Bsp68I, BspCI, BspLU11I, BspTI, BsrBI, BsrFI,
BssAI, BssHII, BssSI, Bst98I, BstBI, BstD102I,
BstDSI, BstEII, BstI, BstPI, BstSNI, Bsu36I,
CciNI, CelII, Cfr10I, Cfr42I, Cfr9I, CpoI,
Csp45I, CspI, CvnI, DraI, DrdI, DsaI, Eam1104I,
EarI, Ecl136II, Eco105I, Eco147I, Eco255I,
Eco31I, Eco47III, Eco57I, Eco72I, Eco81I,
Eco91I, EcoICRI, EcoNI, EcoO65I, EcoT22I,
Esp1396I, FbaI, FseI, FspI, HindIII, HpaI,
Ksp22I, Ksp632I, KspI, LspI, MfeI, MluI,
Mph1103I, MroNI, MspCI, MunI, Mva1269I, NaeI,
NcoI, NgoAIV, NgoMI, NheI, NotI, NruI, NsiI,
NspI, NspV, PacI, PaeI, PaeR7I, PflMI, PinAI,
Ple19I, PmaCI, Pme55I, PmeI, PmlI, Ppu10I,
PshBI, Psp124BI, PspAI, PspALI, PspEI, PspOMI,
PstI, PstNHI, PvuI, RsrII, SacI, SacII, SalI,
SapI, SbfI, ScaI, SfiI, Sfr274I, Sfr303I, SfuI,
SgfI, SgrAI, SmaI, SmiI, SnaBI, SpeI, SphI,
SrfI, Sse8387I, SseBI, SstI, SstII, StuI, SwaI,
Tth111I, Van91I, Vha464I, VspI, XbaI, XhoI,
XmaI, XmnI, Zsp2I
38 As a conclusion
- BamH1 and Xho1 are selected for the restriction
enzymes because they do not cut inside the gene
interest.
39BLAST Analysis
- To ensure that the gene sequence that we choose
is exact gene sequence of the gene interest, dexA
gene for dextranase. - To compare the similarity of our gene sequence to
other gene.
40BLAST ANALYSIS (cont.)
- there are two gene from the Penicillium
minioluteum (clone pUDEX) dextranase (Dex) gene
and Penicillium minioluteum isoform (Dex 2) gene
have similarity with Penicillium funiculosum dexA
gene for dextranase but not 100 of similarity.
41(No Transcript)
42Multiple DNA sequence alignment
- PURPOSE - to compare the other genes which are
similar to our gene of interest. - We can know the different part of our gene if
compare to other genes which is similar to our
gene of interest.
43Multiple DNA sequence alignment (cont.)
- Penicillium minioluteum (clone pUDEX) dextranase
(Dex) gene and Penicillium minioluteum isoform
(Dex 2) gene. - Why we chose these genes?
- Origin from the same genus (Penicillium)
- the gene sequence are almost similar to the our
gene of interest.
44Multiple DNA sequence alignment (cont.)
45Multiple DNA sequence alignment (cont.)
46Choosing the suitable vector
- pETBlue-2 vector
- REASON
- The presence of the desired enzyme cleavage sites
in the multiple cloning sites (MCS) - Allows T7 lac promoter based expression of target
genes - blue/white screening.
47Choosing the suitable vector (cont.)
- Features an expanded multiple cloning site (MCS)
and optional c-terminal HSV.Tag and His.Tag
sequences - protein purification - has the following elements T7 promoter,f1 origin
of replication, lac Z gene,pUC origin,E. coli
promoter,Lac operator region 3 to the T7
promoter,Ampicillin resistance marker and EK site
48(No Transcript)
49DESIGN PRIMER FOR PCR AMPLIFICATION
- Primers
- forward and reverse primer
- produce end product of PCR that contain two
restrictions recognize site (based on pETBlue-2)
50- length 26 bp
- - 6 nucleotides for both primer is a DNA
sequence which will recognize by
restriction enzyme BamH1 and Xho1 - - 20 nucleotides are based on the sequence at
the 5 end to 3 end.
51Forward Primer 5atggatccatggccacaatgctaaagct3 A
7, T 4, G 4, C 5 GC content 45 Â Tm
(AT) 2 (GC) 4 (74)2 (45)4
22 36 58C Â Ta 58C-2C 56C
Reverse Primer 5atctcgagtcacgcgctctgagagctgg3 A
3, T 4, G 7, C 6 GC content 65 Â Tm
(AT) 2 (GC) 4 (34)2 (76)4
14 52 66C Â Ta 66C-2C 64C
52Cutting site
53END PRODUCT OF PCR
5 ggatccatggccacaatgctaaactctcagagcgcgtgact
cgag 3
3 cctaggtaccggtgttacgatttga
gagtctcgcgcactgagctc 5
Gene of Interest 7 1857 bp
Xho l recognize site
Bam Hl recognize site
54POLYMERASE CHAIN REACTION
- 3 steps
- 1. Denaturation
- 2. Annealing
- 3. Extension / replication
- 1. DENATURATION
- - at 95 C
- - double strand of DNA melts ? open to
single stranded DNA
55- 2. ANNEALING
- - primers bind to the single strand DNA
(complementary) - - hydrogen bonds form between the primer and
the DNA strand - - double helix structure is re-created
- - temperature 56 C
- 3. EXTENSION
- - primer which anneal at the single strand DNA
will starts the process of multiplying the
amount of DNA - - primer that are on position with no exact
match get loose again and dont give an
extension of the fragment - - temperature around 72 C
- - used of Taq DNA polymerase
56PROTOCOL FOR PCR
-  Tube S (µl) Tube C
(µl) - Master mix 40 40
- Forward primer 2.5 2.5
- Reverse primer 2.5 2.5
- Template DNA(gene of interest) 5 0
- Sterile deionised distilled water 0
5 - Total 50 50
57Separation of product by agarose gel
electrophoresis
58LIGATION
- Then, the restricted dexA-linker complex will be
ligated into the restricted pETBlue-2 by using
the ligation enzyme which is T4 DNA ligase. - The process of DNA ligation involves creating a
phosphodiester bond between the 3 hydroxyl of
one nucleotide and the 5 phosphate of another. - The T4 DNA ligase requires ATP for its activity.
59BamH1
Xho1
DexA gene
Recombinant
60TRANSFORM OF RECOMBINANT INTO E.COLI (NovaBlue
strain)
61TRANSFORM OF RECOMBINANT INTO E.COLI
- Transformation is the uptake of recombinant
plasmid DNA into host (E. coli). - Firstly we make the bacterial cells competent and
then introduce recombinant plasmid with dexA
gene. - This can be done by treating the cells either
with calcium chloride (CaCl2) method or by means
of electroporation.
62Diagram shown the transformation using the
calcium chloride method
63VERIFICATION OF SUCCESSFUL TRANSFORMATION
- Grow the E. coli onto LB ampicillin plate.
- The plasmid consists of the ampicillin resistance
gene that will help to protect the E. coli from
the antibiotic ampicillin. - If there are colonies present in the ampicillin
plate, it means the transformation of the plasmid
into E. coli is successful.
64Blue White colonies screening
- pETBLUE-2 has MCS where located on the lac z
gene. - If the DexA gene insert to MCS of Vector
pETBlue-2 successfully, the lac z gene will
inactivate. - This is called Insertional Inactivation of
beta-galactosidase. - Non-functional beta-galactosidase will produce.
- can not breakdown of X-gal to a product that is
colored deep blue. - E.coli carrying this plasmid will form white
colony.
65If no DexA gene insert into MCS of vector
pETBlue-2, beta-galactosidase will produce.
This will break down X-gal to a product that is
colored deep blue. E.coli carrying this plasmid
will form blue colony.
66Secondary Screening of Blue White Colonies
- Lead to up to 40 of false-positives for the
insertion. - White colonies on X-Gal do not always show true
colors. - to eliminate the false positive in blue white
screening. - Can get positive insert clones more accurately .
- The methodology same as blue white screening.
- true positive can take for further screening.
67Restriction Enzyme Cleavage Pattern
- True positive white colony grow in large amount
in agar plate containing Ampicillin antibiotic. - The colonies treat with two restriction enzymes
(BamH l Xho l) before run agarose gel
electrophoresis
68PCR Screening
- gene inserted vector (pETBlue-2) extracted out
from the true positive colony and doing the PCR
screening. - The end product of PCR will treat with
restriction enzymes before load into agarose gel
for running the gel electrophoresis.
69Expression of the Recombinant Protein
- Principle using the promoter sites that helps
to express a foreign protein in the host cells. - The recombinant E. coli are let to be grown up
on the nutrient agar plate - Then the bacteria are treated with IPTG
- IPTG molecules are the inducer that increase the
production of recombinant protein - T7 promoter then is activated to start the
transcription and translation of dexA gene into
enzymes dextranase
70Protein Purification
- Nickel Metal Affinity Chromatography Presence
of His-tag inside the vector - Principle separate the protein base on the
isoelectrical charge and the biological activity
of the proteins - Before the protein purification steps, the
E.coli need to be lysed to release the abundant
of proteins.
71Purification of the His-tag recombinant protein
Recombinant protein with His tag
Pass it through a Nickel affinity column
Wash the unbound protein or protein without the
His tag with buffer
Elute the recombinant protein with His tag by
either lowering the pH or using imidazole
His tag protein is treated with the specific
protease to cleave off the His tag
The recombinant protein is freed of the His tag
peptide by running it over the metal-chelate
column again
72Diagram shown the steps involve in purification
of protein
73Why SDS-PAGE ?
- After the protein purification, the protein
that obtained must be analyzed to make sure the
protein we got is pure protein (Dextranase).
74Why SDS-PAGE ?
- After SDS PAGE process,only one band protein
appears on the gel, - 67.7 kDa
- This estimation of the molecular weight of the
Dextranase can be done by comparing with the
known molecular weight marker. - An Rf graph can be drawn using the known
molecular weight marker and read the molecular
weight of Dextranase through the graph. - If more than one band appears on the gel, its
mean that there is a mixture of the protein that
we obtained and the protein is not pure.
75Test the functioning of enzyme
-
- After we obtain the pure protein, we have to do
tests to make sure that the protein that we
cloned out is functioning - There are several test that to assay the enzymes
- -Degradation of glucans with hydrolytic enzymes
- -Stability in commercial mouthwashes
- -Temperature stability
76Test the functioning of enzyme
- 1 ml of dextranase was added to 4 ml commercial
mouthwash without ethanol and 4 ml of the same
product with ethanol. - The tube keep in room temperature.
- Aliquots were removed at different times and the
residual activity was determined in standard
conditions using maltose as a substrate.
77Test the functioning of enzyme
- Expected result
- Dextranase exhibited good stability in
mouthwash without ethanol at pH 5.7 and at room
temperature and they kept 77 of their initial
activity after 4 month. - Under same condition in mouthwash containing
ethanol dexranase only showed only 23 of initial
activity
78(No Transcript)
79Commercial Values
- With declining caries experience, increasing
number of people retaining their teeth new
emphasis on cosmetically attractive dentitions,
there is an increasing public awareness of the
value of personal oral hygiene. - Potential use of dextranase
- decrease the dietary substances of the
microorganisms - promote buffer to neutralize the plaque
acids - provides antibacterial substances which
inhibit dental plaque formation -
-
80Commercial Values
- We plan to combine the use of dextranase along
with the commercial product that already exist in
the market such - chewing gum
- dental products like toothpaste and mouthwash
-
-
81Conclusion
- The dexA gene is the gene that produces the
dextranase, a type of protein that helps to
degrade the dental plaque. - Dextranase have a potential market expansion,
especially with therapeutic or cosmetic
attributes
82REFERENCES
- http//www.ncbi.nlm.nih.gov (14.08.2003)
- http//www.ncbi.nlm.nih.gov/gorf/gorf.html
(15.08.2003) - http//www.firstmarket.com/cutter/cut2.html
(15.08.2003) - http//www.ncbi.nlm.nih.gov/ (14.08.2003)
- http//www2.ebi.ac.uk/clustalw/ (17.08.2003)
- http//www.genome.wi.mit.edu/cgi-bin/primer/primer
3_www.cgi (19.08.2003) - http//www.sciencedirect.com/ (13.08.2003)
- http//www.life.umd.edu/classroom/bsci424/BSCI223W
ebSiteFiles/Chapter9.htm (16.08.2003) - http//www.markergene.com/WebNewsletter4.3.htm
(14.08.2003) - http//www.geocities.com/jsonnentag/iguana/bluwht.
htm (14.08.2003) - http//www.inbios.com/readytogrow.html(15.08.2003)
83REFERENCES
- Invitrogene 1998 Catalog
- Novagen 2002 Catalog
- M. Marotta, A. Martino, A. De Rosa, E. Farina, M.
Cartenì and M. De Rosa. Degradation of dental
plaque glucans and prevention of glucan formation
using commercial enzymes. ScienceDirect. Volume
38, Issue 1 , September 2002 , Pages 101-108. - Robert J. Brooker, Genetics Analysis and
Principle, Addison-Wesley, 1999. - Smith and Wood, Molecular Biology and
Biotechnology, Chapman Hall, 1991. - T. A. Brown, Gene Cloning An Introduction,
Chapman Hall, 2nd edition. - http//www.woodrow.org/teachers/bi/2000/Doggy_DNA/
background_for_polymerase_chai.html - http//allserv.rug.ac.be/avierstr/principles/pcr.
html
84THANK YOU