Programming with LEDA - PowerPoint PPT Presentation

1 / 24
About This Presentation
Title:

Programming with LEDA

Description:

(Adapted from Notes by David Ong Tat Wee) Comb & Graph Alg,SoC (LEDA-Intro) Page 2 ... Lecture Notes adapted from. David Ong Tat Wee's presentation (Thanks! ... – PowerPoint PPT presentation

Number of Views:94
Avg rating:3.0/5.0
Slides: 25
Provided by: theapp
Category:

less

Transcript and Presenter's Notes

Title: Programming with LEDA


1
  • Programming with LEDA
  • Combinatorial and Graph Algorithms
  • Lecture by Leong Hon Wai
  • (Adapted from Notes by David Ong Tat Wee)

2
Introduction to LEDA
  • Info about LEDA
  • Why LEDA
  • Overview of LEDA
  • LEDA Environmental Settings
  • Compiling A LEDA Program
  • LEDA Issues

3
Overview of LEDA
  • LEDA Library of Efficient Data types and
    Algorithms
  • St. Naher and Kurt Mehlhorn (more than 10 years
    history)
  • Max-Planck-Institut für Informatik, Germany
  • LEDA Contains
  • Basic Data Structures (stuff in STL)
  • Advanced Data Structures
  • Graph Algorithms (Efficiency)
  • Written by Knowledgable People
  • concise and abstract specification of data types
  • efficient implementation for performance
  • Rapid Prototyping and Fast Implementation
  • LEDA Url
  • http//www.mpi-sb.mpg.de/LEDA/leda.html

4
Caveats and Information
  • Caveat I am not a LEDA Expert
  • Lecture Notes adapted from
  • David Ong Tat Wees presentation (Thanks!)
  • References
  • Web-site http//www.mpi-sb.mpg.de/LEDA/
  • The LEDA User Manual (Version R3.4.1)
  • The LEDA Book (written by Kurt Mehlhorn and St.
    Naher)
  • http//www.mpi-sb.mpg.de/mehlhorn/LEDAbook.html
  • Other Sites that Uses LEDA
  • Many -- just follow links in LEDA Web-site

5
First LEDA Program
  • include ltLEDA/d_array.hgt
  • main()
  • d_arrayltstring,intgt N(0)
  • string s
  • while (cin gtgt s) Ns
  • forall_defined(s,N)
  • cout ltlt s ltlt " " ltlt Ns ltlt endl
  • Input
  • This LEDA program does a concordance table. This
    is simple!
  • Output
  • This 2 does 1 table 1
  • LEDA 1 a 1 is 1
  • program 1 concordance 1 simple 1

6
Explanation of First LEDA Program
  • include ltLEDA/d_array.hgt
  • main()
  • d_arrayltstring,intgt N(0)
  • string s
  • while (cin gtgt s) Ns
  • forall_defined(s,N)
  • cout ltlt s ltlt " " ltlt Ns ltlt endl
  • Uses LEDA dictionary array Class d_array
  • Builds up a concordance table with it
  • ltword_1, occurrence_1gt,,ltword_n, occurrence_ngt
  • Uses iterator construct
  • forall_defined

7
LEDA -- Compiling Environment Settings
  • LEDA C Header Files
  • /home/proj/leda/4.1/include (Required during
    compilation.)
  • LEDA Runtime Library Files
  • /home/proj/leda/4.1/lib xor /home/proj/leda/4.1/l
    ib/CC
  • Environment Settings
  • Add in .profile
  • LD_LIBRARY_PATHLD_LIBRARY_PATH/home/proj/leda/
    4.1/lib
  • Path required during both compilation (see
    makefile) and runtime.
  • Due to name conflicts of lib files, cannot
    include both lib paths.
  • Compiling a LEDA Program (say leda-test.cpp)
  • g -lL -lm leda-test.cpp ...-lW -lP -lG
  • If required and not done
  • -I/home/proj/leda/4.1/include
    -L/home/proj/leda/4.1/lib

8
A Sample LEDA Graph Program
  • Sample Graph-MST program
  • Generate a random graph, print it
  • Find its MST and print it out

edge_arrayltintgt E(G) listltedgegt L //
compute MST with Krusal's algo L
(MIN_SPANNING_TREE(G, E)) cout ltlt "MST" ltlt
endl forall(e, L)
G.print_edge(e) cout ltlt endl
main() GRAPHltint, intgt G edge e
random_graph(G, 6, 15) forall_edges(e, G)
G.assign(e, (rand() 10) 1)
G.make_undirected() cout ltlt "Graph" ltlt
endl G.print()
9
Sample Output of Graph-MST Program
  • Output of Graph-MST Program
  • Note Format of edge (u,v) with weight w is
    u(w)v
  • Graph
  • 0(0) 0(9)12(6)02(8)03
    (7)0 4(10)05(6)0
  • 1(0) 1(9)51(4)30(9)1
  • 2(0) 2(6)02(2)52(8)02
    (1)5 4(5)2
  • 3(0) 3(10)53(3)43(7)0
    1(4)3 4(8)35(1)3
  • 4(0) 4(10)04(8)34(5)2
    3(3)4
  • 5(0) 5(1)35(6)01(9)52
    (2)5 2(1)53(10)5
  • MST
  • 4(8)3
  • 3(7)0
  • 4(5)2
  • 5(1)3
  • 1(9)5

10
LEDA Issues
  • Specifications
  • Parameterized (Generic) Data Type
  • Linearly Ordered Type
  • Iteration Macros
  • Algorithms

11
LEDA Specification (Stack as example)
  • Specification of a Stack Data Type

12
Specification (d_array)
  • Definition
  • statement of the definition of d_array (see next
    slide)
  • Creation
  • d_arrayltI,Egt A
  • d_arrayltI,Egt A(E x) creates an injective
    function a from I to the set of unused variable
    of type E, sets xdef to x and dom(A) to the
    empty set, and initializes A with a
  • Operation
  • E AI i returns the variable A(i)
  • bool A.defined(I i) returns true if i in
    dom(A)
  • void A.undefined(I i) removes i from dom(A)
    make i undefined
  • Iteration
  • forall_defined(i, A) the elements from dom(A)
    are successfully assigned to i
  • forall(x, A) for all i in dom(A) the entries
    Ai are sucessfully assigned to x
  • Implementation
  • impl. by randomized search tree
  • Access in O(log dom(A)) O(dom(A)) space

13
Definition Creation (d_array)
  • Definition
  • An instance A of d_arrayltI, Egt (dictionary
    array) is an injective mapping
  • from the linearly ordered type I (index type of
    A)
  • to the set of variables of data type E (element
    type of A)
  • Use A(i) to denote the variable with index i
  • dom(A) -- denote the set of used indices
  • empty at time of creation modified by array
    accesses
  • A(i) has default value xdef for all i not-in
    dom(A)
  • Creation -- (also Constructors)
  • d_arrayltI,Egt A creates an injective function
    a from I to the set of unused variable of type
    E, sets xdef to the default value of type E (if
    E has no default value then xdef
    stays undefined) and dom(A) to the empty set,
    and initializes A with a
  • d_arrayltI,Egt A(E x) // gives mapping A I
    --gt E creates an injective function a from I
    to the set of unused variable of type E, sets
    xdef to x and dom(A) to the empty set, and
    initializes A with a

14
Parameterized Data Type
  • Also all LEDA classes are parameterized data
    types
  • Example d_arrayltsometype, sometypegt
  • Any built-in or LEDA type can be used. eg int,
    char, pointer, node, graph,
  • For user-defined class (T) to be used, must
    define
  • TT() //constructor
  • TT(const T) //copy constructor
  • T Toperator(const T) //assignment op
  • (Only if required)
  • istream operatorgtgt(istream, T)
  • ostream operatorltlt(ostream, const T)
  • int compare(const T, const T)
  • int Hash(const T)

15
Operations
  • Each operation description has 2 parts
  • (a) Interface of the operation
  • list_item L.insert (E x, list_item it, int
    dirafter)
  • (See Section 4.7) arguments are element x of type
    E, a list_item it, and an optional relative
    position argument dir
  • (b) Effect of the operation
  • A new item with content x is inserted after (if
    dirafter) or before (if dirbefore) item it into
    L. The new item is returned.
  • Precondition item it must be in L.
  • Eg Operations on object A of type d_array
  • E AI i returns the variable A(i)
  • bool A.defined (I i) returns true if i in
    dom(A)
  • void A.undefined(I i) removes i from dom(A)
    make i undefined

16
Implementation Parameters
  • Default impl. for all advanced data structures
  • provided by LEDA
  • usually fast for most general cases.
  • But, LEDA also allows users to change impl.
  • Dictionary, priority queue, d_array, sortseq
  • Done by adding one more data structure
    parameter
  • Why?
  • User has specific and special needs
  • Use wants to do research with these data
    structures
  • Example
  • d_array vs _d_array

17
Implementation Parameter -- example
d_array implemented with skiplist include
ltLEDA/_d_array.hgt include ltLEDA/impl/skiplist.hgt
main() _d_arrayltstring,int,skiplistgt N(0)
string s while (cin gtgt s) Ns
forall_defined(s,N) cout ltlt s ltlt " "
ltlt Ns ltlt endl
  • LEDA Default d_array
  • include ltLEDA/d_array.hgt
  • main()
  • d_arrayltstring,intgt N(0)
  • string s
  • while (cin gtgt s) Ns
  • forall_defined(s,N)
  • cout ltlt s ltlt " "
  • ltlt Ns ltlt endl

18
Arguments, Parameter Passing
  • Trailing arguments may be optional
  • if missing, default value given in specification
    will be used
  • by-value argument passing
  • type x in arg list
  • S.push (E x) // adds x as new top element //
    to S x is unchanged
  • by-reference argument passing
  • used to change value of arg, for large
    argument objects
  • type x in arg list
  • L1.conc(slistltEgt L2) // appends list L2
    to // list L1 and makes L2 the empty list.

19
Linearly Ordered Type
  • Linear order required for some types (eg. sorted
    sequences, sets)
  • When type T with no default ordering, user must
    define
  • int compare(const T, const T)

class A public A(int i) mID i
A() int id() return mID private
int mID
Want to declare setltAgt ASet Must provide
function int compare(A x, A y) return
compare(x.id(), y.id())
20
Items in Advanced Data Types
  • Most advanced ADT (eg dictionary, priority
    queue, graphs)
  • a collection of items -- which are container
    used to hold
  • user-defined objects of interest
  • plus other things such as pointers and so on.
  • Example
  • listltedgegt MyEdgeList // defines a list of
    edges called MyEdgeList
  • However, the items of the list are of type
    list_item (and not edge)
  • Of course, the key information in list_item is an
    edge
  • Similarity with records in Pascal or structs in
    C/C

21
Working with Items...
  • Careful when updating data types with items
  • list_item L.insert (E x, list_item here, int
    dir after)
  • This operation will insert element x into the
    list L after the list_item here
  • Example of a call will be
  • newitem MyEdgeList (shortedge, current, after)
  • will create a new list_item called newitem with
    the new element shortedge, and insert it after
    the list_item current.
  • The newly created list_item will be returned as
    newitem.

22
Algorithms
  • Provides a number of standard algorithms
  • Graph algorithms
  • TOPSORT, DFS, BFS
  • DIJKSTRA, BELLMAN_FORD
  • MIN_COST_MAX_FLOW
  • MAX_WEIGHT_BIPARTITE_MATCHING
  • Plane algorithms
  • DELAUNAY_TRIANG
  • CONVEX_HULL
  • VORONOI

23
Algorithms
  • Provides a number of standard algorithms
  • Graph algorithms
  • TOPSORT, DFS, BFS
  • DIJKSTRA, BELLMAN_FORD
  • MIN_COST_MAX_FLOW
  • MAX_WEIGHT_BIPARTITE_MATCHING
  • Plane algorithms
  • DELAUNAY_TRIANG
  • CONVEX_HULL
  • VORONOI

24
DIJKSTRA
Dijkstras Algorithm include ltLEDA/graph.hgt inc
lude ltLEDA/node_pq.hgt void DIJKSTRA (graph G,
node s, edge_arrayltintgt cost,
node_arrayltintgt dist,
node_arrayltintgt pred ) node_pqltintgt PQ(G)
int c node u, v edge e
forall_nodes(v,G) predv 0
distv infinity PQ.insert(v, distv)
dists 0 PQ.decrease_inf(s, 0)
while ( ! PQ.empty()) u PQ.del_min()
forall_adj_edges(e,u) v
G.target(e) c distu coste
if (c lt distv) distvc
predvu PQ.decrease_inf(v,c)
// if // forall)adj_edges //
while
Write a Comment
User Comments (0)
About PowerShow.com