Title: OFDM Receiver Design
1OFDM Receiver Design
- Yun Chiu, Dejan Markovic, Haiyun Tang, Ning Zhang
- chiuyun, dejan, tangh, ningzh_at_eecs.berkeley.edu
- EE225C Final Project Report, 12 December 2000
- Department of EECS, UC Berkeley
2Outline
- Overview
- Introduction to OFDM
- 802.11a system specification
- Block Description
- Synchronization
- FFT
- Viterbi
- SVD
- System Integration and Simulation
- Conclusion
3Introduction to OFDM
- Basic idea
- Using a large number of parallel narrow-band
sub-carriers instead of a single wide-band
carrier to transport information - Advantages
- Very easy and efficient in dealing with
multi-path - Robust again narrow-band interference
- Disadvantages
- Sensitive to frequency offset and phase noise
- Peak-to-average problem reduces the power
efficiency of RF amplifier at the transmitter - Adopted for various standards
- DSL, 802.11a, DAB, DVB
4OFDM Signal Representation
- Data set to be encoded on sub-carriers
- IFFT at transmitter
- FFT at receiver
5Cyclic Prefix
Tg
T
Multi-path components
tmax
Tx
T
Sampling start
6802.11a System Specification
- Sampling (chip) rate 20MHz
- Chip duration 50ns
- Number of FFT points 64
- FFT symbol period 3.2ms
- Cyclic prefix period 16 chips or 0.8ms
- Typical maximum indoor delay spread lt 400ns
- OFDM frame length 80 chips or 4ms
- FFT symbol length / OFDM frame length 4/5
- Modulation scheme
- QPSK 2bits/sample
- 16QAM 4bits/sample
- 64QAM 6bits/sample
- Coding rate ½ convolutional code with constraint
length 7
7OFDM System Block Diagram
8Synchronization
- Frame detection
- Frequency offset compensation
- Sampling error
- Usually less 100ppm and can be ignored
- 100ppm off 1 of a sample every 100 samples
Tg
T
Frame start
9Channel Estimation
10System Pilot Structure
11Synchronization, Frequency Offset Compensation
12Outline
- IEEE 802.11a OFDM Transmitter Model
- Receiver Synchronization Module
- A Robust Double Correlation (Correlation
Auto-Correlation) Based Algorithm - Receiver Frequency Offset Estimation Module
- A Coarse-Fine Joint Estimation Algorithm with
Decision-Alignment Error Correction - Receiver Frequency Offset Compensation Module
- Performance Summary
13IEEE 802.11a OFDM Txer
14Short Long Preambles
Short Preamble
Long Preamble
15Correlation of Short Preamble
Correlation
Fine Timing
Auto-Correlation
Coarse Timing
16Synchronization
Moving Auto-Corr. Unit
Moving SP Corr. Unit
17Impairments Multi-Path Channel
18Impairments Frequency Offset
19Fine Frequency Offset Est.
Accumulator
Complex Multiplier
Sync. Signal
20Coarse-Fine Joint Estimation Decision
Alignment Error Correction
Average over 64 chips
Average over 16 chips
100ppm Dfc _at_ 5.8GHz
Coarse
Fine
21Frequency Offset Compensation
Decision Alignment
Channel
Joint Coarse-Fine Est.
Offest Corr.
22Performance Summary
23FFT
24Pipelined FFT Architecture
Sel
Re
Im
Re
Im
Sel
-1
W
Count
xn
, -j, 1
Xk
Butterfly
Butterfly
Butterfly
2
N/2
N/4
25Summary of FFT Block
26System Simulations and Viterbi Decoder
27System Simulation
28Problems to be Handled
- Constant over packet frame use long preamble
- Slowly varying frequency selective fading channel
- Symbol boundary offset
- Varying across OFDM symbols use pilot channels
- Phase offset
- Residue frequency offset
29Frequency Selective Fading Channel
- Time domain channel model
- 8-tap delay line (400ns delay spread)
- amplitude exponential decaying profile
- phase random
30Channel Compensation
- One-tap equalizer for each sub-carrier
- 1)
- 2)
- Soft-input Viterbi Decoder
- Improve BER with AWGN
- Protect against frequency selective fading
31Simulation Results
- Simulation parameters
- frequency offset
- (-100ppm to 100ppm)
- frequency selective
- channel
- simulation length
- 104 bits
32Viterbi Decoder
Z-1
Branch Metric Unit
State Metric Update Unit
Survivor Path Decode Unit
- Block parameters
- Constraint length and code generator
- Survivor path length
- Soft input word length
Parallel architecture with modulo arithmetic
Register-exchange
Number of states 64, Survivor path length 30,
Soft input precision 3-bit
33Viterbi Decoder Summary
34SVD Based Channel Estimation
35Concept of SVD
z'1
Tx
Rx
Channel
?1
Encoding Modulation
Demodulation Decoding
z'4
...
V
V
U
U
?4
BB-equivalent channel models
y H x z
1.
y U ? V x z
SVD
2.
x' V x y' U y z' U z
y' ? x' z'
Unitary X-form
3.
Need to know V at Tx and U,? at Rx
36SVD Based OFDM System
(A. Klein 00)
- 48 SVD blocks are required!
37SVD Block for OFDM System
38Model of Channel Noise
z'1
Tx
Rx
Channel
?1
Encoding Modulation
Demodulation Decoding
z'4
...
V
V
U
U
?4
39BER Simulation Results
- QPSK modulation
- One narrowband
- carrier
- 4 Rx antennae
- 4 Tx antennae
- Ideal FB from Rx
40SVD Hardware Realization
90 dense
V(1)
0.47mm
0.47mm
41Performance Summary (0.25mm)
Building Blocks
inputs
output
P mW
A mm2
D ns
N
1.
5.9
0.156
7.7
C4?1 , C4?1
C1?1
Cmult_Vd_V
8
2.
0.4
0.075
2.1
C1?1 , C1?1
C1?1
Csub_d
8
3.
5.6
0.158
6.9
C1?1 , C4?1
C4?1
Cmult_S_V
8
4.
2.2
0.064
7.2
R1?1 , C4?1
C4?1
Cmult_RS_V
8
5.
1.2
0.027
2.0
C4?1 , C4?1
C4?1
Csum_V_V
8
6.
20.1
0.459
12.3
C4?1 , R1?1
C4?1
Cdiv_V_RS
8
fCLK100MHz
SVD
inputs
output
P mW
A mm2
D ns
N
64
1.74
8.2
R1?1 ,C4?1 , C4?1
C4?1
V_est
8
R1?1 , C4?1
U?_est
8
R4?4 , C4?1
8.2
210
5.54
42Hardware Realization, Conclusion
43Overall System Summary
fCLK 20MHz
44Overall Hardware Breakdown
SVD
Die photo (W. R. Davis et al., CICC01)
45Porting to a New Technology
Area reduction 58.5
Prof. Wile E. Coyote
46Entire Design in 0.18mm
Prof. Pink Panter
47Conclusion and Future Work
- Major building blocks of an OFDM Rx
- Synchronization
- FFT
- Viterbi decoder
- SVD
- OFDM System Simulation
- SVD-based array processing
- Future Work
- Integration of array processing in OFDM
- Interpolation across sub-carriers
- Complete fix point model