Title: Metabolic Biochemistry BIBC102
1Metabolic BiochemistryBIBC102
- Lecture 14
- November 5, 2007
2(No Transcript)
3LNC Fig.19.7
4the arrangement of the complexes in the inner
membrane and the order of electron flow
5(No Transcript)
6Red the components are drained of electrons,
i.e. oxidized
Blue the components are filled with electrons,
i.e. reduced
7succinate
Succinate dehydrogenase membrane bound enzyme
of Krebs cycle
Four integral membrane protein complexes Two
mobile carriers ubiquinone and cytochrome c
LNC Fig.19.15
8oxidized Coenzyme Q or Q
reduced Coenzyme Q or QH2
LNC Fig.19.2
9What makes proteins conductors of electrons?
They get spiked with Fe ions Fe2/Fe3
Two kinds of structures Fe-S centers and hemes
Near the end of the chain we also encounter some
Cu ions
10Heme apoprotein cytochrome
LNC Fig.19.3
11Structure of cytochrome c
12LNC Fig.19.4
13NON-HEME IRON - SULFUR CENTERS Fe2-S2 Fe4 -
S4
14LNC Fig.19.5
15Fe2-S2
LNC Fig.19.5
16Fe4-S4
LNC Fig.19.5
17LNC Fig.19.5
18O2
NADH
19succinate
Succinate dehydrogenase membrane bound enzyme
of Krebs cycle
Four integral membrane protein complexes Two
mobile carriers ubiquinone and cytochrome c
LNC Fig.19.15
207 or 8
NADH Q H ? NAD QH2
LNC Fig.19.9
21We have the crystal structure for
this subdomainof complex I from a bacterium
7 or 8
NADH Q H ? NAD QH2
LNC Fig.19.9
22From Sazanov and Hinchliffe (2006) Science
3111430-1436
NADH
Q
23From Sazanov and Hinchliffe (2006) Science
3111430-1436
24Architecture of Succinate Dehydrogenase and
Reactive Oxygen Species Generation Victoria
Yankovskaya,1 Rob Horsefield,2 Susanna
Tornroth,3 Cesar Luna-Chavez,1,4 Hideto
Miyoshi,5 Christophe Leger,6 Bernadette Byrne,2
Gary Cecchini,1,4 So Iwata2,3,7 SCIENCE 31
JANUARY 2003 VOL 299, p.700 www.sciencemag.org
succinate
2Fe-2S 3Fe-4S 4Fe-4S
Succinate FAD ? fumarate FADH2FADH2
Q ? QH2 FAD __________________
________________ Succinate Q ? fumarate
QH2
Succinate Q ? fumarate QH2
LNC Fig.19.10
25Complex III 8-11 polypeptides two cytochromes, b
and c1 one iron-sulfur center
QH2 2 cyt c (Fe3) ? Q 2 cyt c
(Fe2) (ignore the protons for the moment)
LNC Fig.19-11
26LNC Fig.19-11b
27The Q Cycle
LNC Fig.19-12
Net equation QH2 2 cyt cox 2Hin ? Q 2
cyt cred 4Hout
2 Fe3
2 Fe2
28Cyt c1 red Cyt c ox ? Cyt c1 ox Cyt c
red
Fe3
Fe3
Fe2
Fe2
?
29Complex IV - cytochrome oxidase 9 - 13
polypeptides (not all shown here) cytochromes a
and a3 two copper centers
4 cyt c (Fe2) O2 4H ? 4 cyt c (Fe3)
2 H2O ( and protons pumped)
LNC Fig19-13a
30(No Transcript)
31Complex IV (schematic)
4 cyt cred O2 4 H 4 cyt cox
2 H2O
Fe2
Fe3
LNC Fig.19-14
32(No Transcript)
33Free Energy
34An excerpt from Table 13-7, in reverse order But
note there is a mistake in Table 13.7 for the
reduction of ubiquinone
352 NADH 2 H O2 gt 2 NAD 2 H2O
NADH H 1/2O2 gt NAD H2O
- the half reactions
-
- NAD H 2e- ltgt NADH Eo '
- 0.315 V - 1/2 O2 2 H 2e- ltgt H2O Eo '
0.815 V - NADH 1/2O2 H ltgt H2O NAD
-
- DEo ' 0.815 0.315 1.130 V
- DEo ' Eo ' (electron acceptor) - Eo '
(electron donor) - DGo ' - n F DEo '
- where F is the Faraday constant 96,494 kJ/volt
. mole, and substitution yields - DGo ' - 2
x 96,494 x 1.13 - 218 kJ/mole (NADH) - since it takes 30.5 kJ/mole ATP to make ATP from
ADP and Pi, we can in principle make 218/30 7
moles ATP per NADH if a suitable coupling
mechanism could be found and it worked at 100
efficiency
36How is electron transport coupled to ATP
synthesis ?
374H
2H
4H
IMS
MATRIX
LNC Fig.19.15
38Proton pumping and Storage of Free Energy
39IMS
Matrix
inner membrane
H
H
LNC 19-6
40DG 2.3 RT DpH 1 x F x DY
DpH 0.75 DY 0.15 - 0.2 v DG
20 kJ/mol (H)
The oxidation of NADH liberates 220 kJ/mol
(NADH) therefore, we can pump 11 protons at
100 efficiency
41tightly coupled vs uncoupled mitochondria
42succinate
43LNC 19-18a
44(No Transcript)
45LNC Fig.19.8
46End of Lecture 14 February 9, 2007