Polygenic Inheritance - PowerPoint PPT Presentation

1 / 16
About This Presentation
Title:

Polygenic Inheritance

Description:

contributing or additive alleles. non-contributing or non-additive alleles ... 1 contributing allele. 2 contributing alleles. 3 contributing alleles. 4 ... – PowerPoint PPT presentation

Number of Views:967
Avg rating:3.0/5.0
Slides: 17
Provided by: michae904
Category:

less

Transcript and Presenter's Notes

Title: Polygenic Inheritance


1
Polygenic Inheritance
  • Feb. 13-16, 2007

2
Grab your fly vials
  • Need to clear P1 parents from Drosophila cultures
  • prevents P1 flies from mating with F1 flies that
    will be hatching in a few days
  • Take vials outside, release stopper, and make
    sure all adult flies are out of the vial
  • replace stopper and return vial to the front
    counter

3
Polygenic Inheritance
  • more than 1 gene pair influences trait
  • polygenes
  • contributing or additive alleles
  • non-contributing or non-additive alleles
  • Many traits show continuous variation
  • i.e., human height, IQ
  • Traits also influenced by environment

4
Continuous vs. Discrete
  • Polygenic traits may show continuous or discrete
    phenotypes
  • Usually related to number of alleles involved
  • May also be affected by environmental factors

5
Example
  • 4 gene pairs influence rabbit ear length
  • each allele contributes equally
  • AABBCCDD will be longest
  • aabbccdd will be shortest

6
Example
  • Pure-breeding homozygote with 8cm ears (AABBCCDD)
    mated to pure-breeding homozygote with 4 cm ears
    (aabbccdd)
  • F1 generation uniform, 6cm ears (AaBbCcDb)
  • F2 has continuum of ears 4-8cm, with most between
    5-7cm

7
Estimating number of gene pairs
  • Estimated from fraction of F2 with phenotype
    expressed by P1 ancestor
  • Estimated through binomial expansion

(p q)n
8
Generating Expected Fractions
ps exponent x coefficient number in series
  • Use Pascals triangle
  • Expand the binomial
  • (p q)n where n is number of alleles

9
Pascals triangle
1
(p q)0
(p q)1
1
1
(p q)2
2
1
1
(p q)3
3
3
1
1
(p q)4
4
6
1
1
4
(p q)5
5
10
1
5
1
10
(p q)6
6
15
1
15
6
20
1
7
21
1
35
21
35
1
7
(p q)7
(p q)8
8
28
1
70
56
56
8
28
1
(p q)9
9
36
1
126
126
84
36
84
9
1
10
45
1
210
252
120
120
210
45
10
1
(p q)10
10
Binomial expansion
  • Lets expand the binomial (pq)6 and calculate
    the expected fraction for 6 alleles (3 pairs)

p6 6 p5q 15 p4q2 20 p3q3 15 p2q4 6 pq5
q6
11
Binomial expansion
  • Lets expand the binomial (pq)6 and calculate
    the expected fraction for 6 alleles (3 pairs)
  • Add coefficients
  • 161520156164
  • Expected fraction is 1/64

p6 6 p5q 15 p4q2 20 p3q3 15 p2q4 6 pq5
q6
12
Calculating Expected Fractions
1
(p q)0
(p q)1
1 contributing allele
2 contributing alleles
1
1
0 contributing alleles
AA
Aa
aa
(p q)2
2
1
1
2 polygenes (1 pair)
(p q)3
3
3
1
1
(p q)4
4
6
1
1
4
4 polygenes (2 pair)
0 contributing alleles
2 contributing alleles
4 contributing alleles
1 contributing allele
3 contributing alleles
13
Estimating Number of Gene Pairs
  • How many offspring of an F2 cross resemble the
    original parent?
  • Obtained through ratio of coefficients obtained
    from expansion of the binomial
  • 4 genes (2 pair) 1/16
  • 6 genes (3 pair) 1/64
  • 8 genes (4 pair) 1/256
  • 10 genes (5 pairs) 1/1024
  • 12 genes (6 pairs) 1/4096 (1/212)
  • Hintnotice the expected fraction decreases by
    the reciprocal of 2 raised to the power of the
    number of genes

14
Two gene pairs
  • (¼)2 1/16
  • 1/16 will be AABB
  • 1/16 will be aabb

15
Estimating Allele Contribution
  • Find the number of gene pairs involved
  • Find the amount that all gene pairs add
  • Distribute that amount over the number of gene
    pairs

16
Number of Gene Pairs
  • average most extreme phenotypes
  • (9 4)/2 6.5
  • determine the fraction of these offspring present
  • 6.5/1776 0.0037
  • find n of (¼)n
  • (¼)n 0.0037
  • n 4 pairs
Write a Comment
User Comments (0)
About PowerShow.com