Time Domain Analysis - PowerPoint PPT Presentation

1 / 16
About This Presentation
Title:

Time Domain Analysis

Description:

Linear dynamic system. Stability analysis ... Non-trivial steady state is asymptotically stable. Result holds locally near the steady state ... – PowerPoint PPT presentation

Number of Views:266
Avg rating:3.0/5.0
Slides: 17
Provided by: mls1
Category:

less

Transcript and Presenter's Notes

Title: Time Domain Analysis


1
Time Domain Analysis
  • Linear differential equation systems
  • Matlab example
  • Linear stability analysis
  • Nonlinear stability analysis
  • Biochemical reactor example

2
Linear Differential Equations
  • Coupled linear differential equations
  • Matrix representation

3
Matrix Diagonalization
  • Coordinate transformation
  • Columns of M are the eigenvectors of A
  • Transformed equations
  • Solution of decoupled equations

4
Solution Properties
  • Coordinate transformation
  • Solution
  • Solution properties determined by the eigenvalues
  • Eigenvalues in time domain equivalent to poles in
    Laplace domain

5
Matlab Example
  • Transfer function model
  • Compute poles
  • gtgt gtf(2 1,4 2 6 1)
  • gtgt ppole(g)
  • p
  • -0.1634 1.1903i
  • -0.1634 - 1.1903i
  • -0.1732
  • Convert to state-space model
  • gtgt sysss(g)
  • Compute eigenvalues
  • gtgt lambdaeig(sys.a)
  • lambda
  • -0.1634 1.1903i
  • -0.1634 - 1.1903i
  • -0.1732
  • gtgt ppole(sys)
  • p
  • -0.1634 1.1903i
  • -0.1634 - 1.1903i
  • -0.1732

6
Linear Stability Analysis
  • Linear dynamic system
  • Stability analysis
  • The origin is the only steady-state point if A is
    full rank
  • Determine stability of origin based on
    eigenvalues of A
  • Solution form
  • Eigenvalues can be real and/or complex numbers

7
Eigenvalue Analysis
  • Real eigenvalues
  • If li lt 0 then exp(lit) ? 0
  • If li gt 0 then exp(lit) ? infinity
  • If li 0 then exp(lit) ? 1
  • Complex eigenvalues
  • li aijbi
  • exp(lit) exp(ait)sin(bit)
  • If ai lt 0 then exp(lit) ? 0
  • If ai gt 0 then exp(lit) ? infinity
  • If ai 0 then exp(lit) ? sin(bit)
  • Stability determined by the real parts of the
    eigenvalues Re(li)

8
Eigenvalues in the Complex Plane
9
Nonlinear Stability Concepts
  • Nonlinear dynamic model
  • Steady-state points
  • Nonlinear models can have multiple steady states
  • Stability must be determined for each steady
    state
  • Nonlinear deviation model
  • Can assume origin is the steady-state point

10
Types of Nonlinear Stability
  • Stable
  • Given bound on x(t)
  • Produce bound on x(0)
  • Origin is locally stable
  • Otherwise origin is unstable
  • Asymptotically stable
  • Given bound on x(t) given x(t) ? 0
  • Produce bound on x(0)
  • Origin is locally asymptotically stable

11
Stability Theorems
  • Linear system stability
  • Compute the eigenvalues of A
  • The system is asymptotically stable if and only
    if Re(li) lt 0 for i 1, 2, , n
  • The origin is unstable if Re(li) gt 0 for any i
  • Stability slightly less restrictive
  • Nonlinear system stability
  • Linearize model about steady state to determine A
  • Compute the eigenvalues of A
  • The origin is locally asymptotically stable if
    Re(li) lt 0 for i 1, 2, , n
  • The origin is unstable if Re(li) gt 0 for any i
  • More advanced methods needed if Re(li) 0

12
Biochemical Reactor Example
  • Continuous bioreactor model
  • Steady-state equations
  • Two steady-state points

13
Model Linearization
  • Biomass concentration equation
  • Substrate concentration equation
  • Linear model structure

14
Non-Trivial Steady State
  • Parameter values
  • KS 1.2 g/L, mmax 0.48 h-1, YX/S 0.4 g/g
  • D 0.15 h-1, Si 20 g/L
  • Steady-state concentrations
  • Linear model coefficients (units h-1)

15
Stability of the Non-Trivial Steady State
  • Matrix representation
  • Eigenvalue computation (units h)
  • Conclusion
  • Non-trivial steady state is asymptotically stable
  • Result holds locally near the steady state

16
Washout Steady State
  • Steady state
  • Linear model coefficients (units h-1)
  • Eigenvalue computation (units h)
  • Conclusion
  • Washout steady state is unstable
  • Suggests that non-trivial steady state is
    globally stable
Write a Comment
User Comments (0)
About PowerShow.com