Particle Transport and a little Particle Acceleration - PowerPoint PPT Presentation

About This Presentation
Title:

Particle Transport and a little Particle Acceleration

Description:

n 0, stable. du/d = 1 - un. The Dreicer Field. Recall. vc = a1/n ~ Epart-1/2 ... Super-Dreicer Acceleration ... Super-Dreicer Acceleration. Short (~105 cm) ... – PowerPoint PPT presentation

Number of Views:48
Avg rating:3.0/5.0
Slides: 122
Provided by: gordon84
Category:

less

Transcript and Presenter's Notes

Title: Particle Transport and a little Particle Acceleration


1
Particle Transport (and a little Particle
Acceleration)
  • Gordon Emslie
  • Oklahoma State University

2
Evidence for Energetic Particles
  • Particles escaping into interplanetary space
  • Hard X-ray emission (electrons)
  • Gamma-ray emission (electrons and ions)
  • Radio emission (electrons)
  • Will focus mostly on electrons in this talk

3
Bremsstrahlung Process
4
Inversion of Photon Spectra
  • I(?) K ??? F(E) ?(?,E) dE
  • ?(?,E) ?/?E
  • J(?) ? I(?) ?K ??? G(E) dE
  • G(E) -(1/?K) dJ(?)/d ?
  • G(E) J(?)

5
Inversion of Photon Spectra
  • I(?) K ??? F(E) ?(?,E) dE
  • ?(?,E) ?/?E
  • J(?) ? I(?) ?K ??? G(E) dE
  • G(E) -(1/?K) dJ(?)/d ?
  • G(E) J(?)

6
Key point!
Emission process is straightforward, and so it is
easy to ascertain the number of electrons from
the observed number of photons!
7
Required Particle Fluxes/Currents/Powers/Energies
(Miller et al. 1997 straightforwardly
proportional to observed photon
flux) Electrons 1037 s-1 gt 20 keV 1018 Amps 3
?1029 ergs s-1 for 100 s 3 ? 1031 ergs
Ions 1035 s-1 gt 1 MeV 1016 Amps 2 ? 1029 ergs s-1
for 100 s 2 ? 1031 ergs
8
Order-of-Magnitude Energetics
9
Electron Number Problem
1037 s-1 gt 20 keV Number of electrons in loop
nV 1037 All electrons accelerated in 1
second! Need replenishment of acceleration
region!
10
Electron Current Problem
Steady-state (Ampère) B ??oI/2?r
(10-6)(1018)/108 104 T 108 G (B2/8?) V
1041 ergs! Transient (Faraday) V (?ol) dI/dt
(10-6)(107)(1018)/10 1018 V!! So either (1)
currents must be finely filamented or (2)
particle acceleration is in random directions
11
An Acceleration Primer
  • F qEpart Epart Elab vpart ? B
  • Epart large-scale ? coherent acceleration
  • Epart small-scale ? stochastic acceleration

12
Acceleration by Large-Scale Electric Fields
  • m dv/dt q Epart m v ?
  • Suppose ? a vn-1
  • dv/dt (q/m) Epart a vn g a vn
  • Let vc (g/a)1/n u v/vc ? gt/vc
  • du/d? 1 un
  • For air drag, ? v (n 2)
  • For electron in plasma, ? 1/v3 (n -2)

13
Acceleration by Large-Scale Electric Fields
  • m dv/dt q Epart m v ?
  • Suppose ? vn-1
  • dv/dt (q/m) Epart vn a vn
  • Let vc g1/n u v/vc ? gt/vc
  • du/d? 1 un
  • For air drag, ? v (n 2)
  • For electron in plasma, ? 1/v3 (n -2)

14
Acceleration by Large-Scale Electric Fields
  • m dv/dt q Epart m v ?
  • Suppose ? vn-1
  • dv/dt (q/m) Epart vn a vn
  • Let vc a1/n u v/vc ? at/vc
  • du/d? 1 un
  • For air drag, ? v (n 2)
  • For electron in plasma, ? 1/v3 (n -2)

15
Acceleration by Large-Scale Electric Fields
  • m dv/dt q Epart m v ?
  • Suppose ? vn-1
  • dv/dt (q/m) Epart vn a vn
  • Let vc a1/n u v/vc ? at/vc
  • du/d? 1 un
  • For air drag, ? v (n 2)
  • For electron in plasma, ? 1/v3 (n -2)

16
Acceleration Trajectories
du/d? 1 - un
du/d?
u
17
Acceleration Trajectories
du/d? 1 - un
du/d?
1
1
u
ngt0
18
Acceleration Trajectories
du/d? 1 - un
du/d?
nlt0
1
1
u
ngt0
19
Acceleration Trajectories
du/d? 1 - un
du/d?
nlt0
1
u increasing
1
u
ngt0
20
Acceleration Trajectories
du/d? 1 - un
du/d?
nlt0
1
u increasing
1
u
u decreasing
ngt0
21
Acceleration Trajectories
du/d? 1 - un
du/d?
nlt0
1
u increasing
1
u
u decreasing
ngt0, stable

22
Acceleration Trajectories
du/d? 1 - un
du/d?
nlt0, unstable

1
u increasing
1
u
u decreasing
ngt0, stable

23
The Dreicer Field
  • Recall
  • vc a1/n Epart-1/2
  • If vc vth, Epart ED the Dreicer field
  • (ED 10-8 n(cm-3)/T(K) V cm-1 10-4 V cm-1)
  • vc vth(E/ED)-1/2
  • If E lt ED, vc gt vth runaway tail
  • If E gt ED, vc lt vth bulk energization

24
Sub-Dreicer Acceleration
z
L-z
FeE
dz
zL
dn/dt (particles with v gt vcrit)
25
Sub-Dreicer Acceleration
z
L-z
FeE
dz
zL
dn/dt (particles with v gt vcrit)
EeE(L-z) dEeEdz F(E)dE(dn/dt)dz ?
F(E)(1/e?)(dn/dt)
26
Sub-Dreicer Acceleration
Emergent spectrum is flat!
z
L-z
FeE
dz
zL
dn/dt (particles with v gt vcrit)
EeE(L-z) dEeEdz F(E)dE(dn/dt)dz ? F(E)(1/eE
)(dn/dt)
27
Accelerated Spectrum
F(E )
background Maxwellian
runaway tail height dn/dt
E
eE L
28
Computed Runaway Distributions
(Sommer 2002, Ph.D. dissertation, UAH)
29
Photon Spectrum
30
Accelerated Spectrum
  • Predicted spectrum is flat
  • Observed spectrum is power law
  • Need many concurrent acceleration regions, with
    range of E and L

31
Sub-Dreicer Geometry
Accelerated particles
Acceleration Regions
32
Sub-Dreicer Geometry
Accelerated particles
Acceleration Regions
Replenishment
33
Sub-Dreicer Geometry
Accelerated particles
Acceleration Regions
Replenishment
34
Sub-Dreicer Geometry
Accelerated particles
Accelerated particles
Acceleration Regions
Replenishment
Replenishment
35
Sub-Dreicer Geometry
Accelerated particles
Accelerated particles
Acceleration Regions
Replenishment
Replenishment

1012 acceleration regions required!
36
Sub-Dreicer Geometry
Accelerated particles
Accelerated particles
Acceleration Regions
Replenishment
Replenishment
1012 acceleration regions required!
Current closure mechanism?
37
Sub-Dreicer Acceleration
  • Long (109 cm) acceleration regions
  • Weak (lt 10-4 V cm-1) fields
  • Small fraction of particles accelerated
  • Replenishment and current closure are challenges
  • Fundamental spectral form is flat
  • Need large number of current channels to account
    for observed spectra and to satisfy global
    electrodynamic constraints

38
Super-Dreicer Acceleration
  • Short-extent (105 cm) strong (1 V cm-1) fields
    in large, thin (!) current sheet

39
Super-Dreicer Acceleration Geometry
y
x
40
Super-Dreicer Acceleration Geometry
y
Bx
x
Bx
41
Super-Dreicer Acceleration Geometry
y
Bx
v
x
v
Bx
42
Super-Dreicer Acceleration Geometry
y
Bx
Ez
?
v
x
v
Bx
Ez v ? B
43
Super-Dreicer Acceleration Geometry
y
Bx
Ez
?
v
x
Bz
?
v
Bx
44
Super-Dreicer Acceleration Geometry
y
Field-aligned acceleration
Bx
Ez
?
v
x
Bz
?
v
Bx
45
Super-Dreicer Acceleration Geometry
y
Field-aligned acceleration
Bx
Ez
?
v
x
Bz
?
By
v
By
Bx
46
Super-Dreicer Acceleration Geometry
y
Field-aligned acceleration
Bx
Ez
?
v
x
Bz
?
By
v
By
Bx
Motion out of acceleration region
47
Super-Dreicer Acceleration
  • Short (105 cm) acceleration regions
  • Strong (gt 10 V cm-1) fields
  • Large fraction of particles accelerated
  • Can accelerate both electrons and ions
  • Replenishment and current closure are
    straightforward
  • No detailed spectral forms available
  • Need very thin current channels stability?

48
(First-order) Fermi Acceleration
-U
v
U
49
(First-order) Fermi Acceleration
-U
v
U
(v2U)
50
(First-order) Fermi Acceleration
-U
v
U
(v2U)
dv/dt ?v/?t
51
(First-order) Fermi Acceleration
L
-U
v
U
(v2U)
dv/dt ?v/?t 2U/(L/v) (2U/L)v
52
(First-order) Fermi Acceleration
L
-U
v
U
(v2U)
dv/dt ?v/?t 2U/(L/v) (2U/L)v
v e(2U/L)t
(requires v gt U for efficient acceleration!)
53
Second-order Fermi Acceleration
  • Energy gain in head-on collisions
  • Energy loss in overtaking collisions

54
Second-order Fermi Acceleration
  • Energy gain in head-on collisions
  • Energy loss in overtaking collisions
  • BUT number of head-on collisions exceeds number
    of overtaking collisions
  • ? Net energy gain!

55
Stochastic Fermi Acceleration(Miller, LaRosa,
Moore)
  • Requires the injection of large-scale turbulence
    and subsequent cascade to lower sizescales
  • Large-amplitude plasma waves, or magnetic
    blobs, distributed throughout the loop
  • Adiabatic collisions with converging scattering
    centers give 2nd-order Fermi acceleration (as
    long as v gt U! )

56
Stochastic Fermi Acceleration
  • Thermal electrons have vgtvA and are efficiently
    accelerated immediately
  • Thermal ions take some time to reach vA and hence
    take time to become efficiently accelerated

57
Stochastic Acceleration
t 0 0.1 s
58
t 0.1 0.2 s
59
t 0.2 1.0 s
60
T 2 4 s ? Equilibrium
61
Stochastic Acceleration
  • Accelerates both electrons and ions
  • Electrons accelerated immediately
  • Ions accelerated after delay, and only in long
    acceleration regions
  • Fundamental spectral forms are power-laws

62
Electron vs. Ion Acceleration and Transport
  • If ion and electron acceleration are produced by
    the same fundamental process, then the gamma-rays
    produced by the ions should be produced in
    approximately the same location as the hard
    X-rays produced by the electrons

63
Observations 2002 July 23 Flare
WRONG!!!
64
Observations 2002 July 23 Flare
Ion acceleration favored on longer loops!
65
(No Transcript)
66
Particle Transport
  • Cross-section
  • dE/dt ? n v E

67
Particle Transport
  • Cross-section
  • dE/dt ? n v E

68
Particle Transport
  • Cross-section
  • dE/dt ? n v E

cm-3
erg s-1
erg
cm s-1
69
Particle Transport
  • Cross-section
  • dE/dt ? n v E

cm-3
erg s-1
erg
cm s-1
cm2
70
Coulomb collisions
  • ? 2?e4?/E2
  • ? Coulomb logarithm 20)
  • dE/dt -(2?e4?/E) nv -(K/E) nv
  • dE/dN -K/E dE2/dN -2K
  • E2 Eo2 2KN

71
Spectrum vs. Depth
  • Continuity F(E) dE Fo(Eo)dEo
  • Transport E2 Eo2 2KN E dE Eo dEo
  • F(E) Fo(Eo) dEo/dE (E/Eo) Fo(Eo)
  • F(E) (E/ (E2 2KN1/2)Fo(E2 2KN1/2)

72
Spectrum vs. Depth
  • F(E) (E/ (E2 2KN1/2)Fo(E2 2KN1/2)
  • (a) 2KN ltlt E2
  • F(E) Fo(E)
  • (b) 2KN gtgt E2
  • F(E) (E/2KN1/2) Fo(2KN1/2) E
  • Also,
  • v f(v) dv F(E) dE ? f(v) m F(E)

73
Spectrum vs. Depth
  • F(E) (E/ (E2 2KN1/2)Fo(E2 2KN1/2)
  • (a) 2KN ltlt E2
  • F(E) Fo(E)
  • (b) 2KN gtgt E2
  • F(E) (E/2KN1/2) Fo(2KN1/2) E
  • Also,
  • v f(v) dv F(E) dE ? f(v) m F(E)

74
Spectrum vs. Depth
Resulting photon spectrum gets harder with depth!
75
Return Current
  • dE/ds -eE, E electric field
  • Ohms Law E ? j ?eF, F particle flux
  • dE/ds -?e2F
  • dE/ds independent of E E Eo e2 ? ? F ds
  • note that F Fs due to transport and ? ?(T)

76
Return Current
  • Zharkova results

77
Return Current
  • dE/ds -?e2F
  • Penetration depth s 1/F
  • Bremsstrahlung emitted F ? (1/F) independent
    of F!
  • Saturated flux limit very close to observed
    value!

78
Magnetic Mirroring
  • F - ? dB/ds ? magnetic moment
  • Does not change energy, but causes redirection of
    momentum
  • Indirectly affects energy loss due to other
    processes, e.g.
  • increase in pitch angle reduces flux F and so
    electric field strength E
  • Penetration depth due to collisions changed.

79
(No Transcript)
80
Observational Tests of Transport
81
(No Transcript)
82
Feature Spectra
83
Feature Spectra
84
Feature Spectra
85
Feature Spectra
86
Temporal Trends
87
Temporal Trends
N
88
Temporal Trends
N
M
89
Temporal Trends
N
M
S
90
Implications for Particle Transport
  • Spectrum at one footpoint (South) consistently
    harder
  • This is consistent with collisional transport
    through a greater mass of material!

91
Atmospheric Response
  • Collisional heating ? temperature rise
  • Temperature rise ? pressure increase
  • Pressure increase ? mass motion
  • Mass motion ? density changes
  • Evaporation

92
Atmospheric Response
t 0, 10, 20, 30 s
93
Atmospheric Response
temperature increase
t 0, 10, 20, 30 s
94
Atmospheric Response
temperature increase
t 0, 10, 20, 30 s
upward motion
95
Atmospheric Response
temperature increase
t 0, 10, 20, 30 s
increased density
upward motion
96
Atmospheric Response
t 0, 10, 20, 30 s
t 40, 50, 60 s
97
Atmospheric Response
continued heating
t 0, 10, 20, 30 s
t 40, 50, 60 s
98
Atmospheric Response
continued heating
t 0, 10, 20, 30 s
t 40, 50, 60 s
subsiding motions
99
Atmospheric Response
continued heating
t 0, 10, 20, 30 s
t 40, 50, 60 s
subsiding motions
enhanced soft X-ray emission
100
The Neupert Effect
  • Hard X-ray (and microwave) emission proportional
    to injection rate of particles (power)
  • Soft X-ray emission proportional to accumulated
    mass of high-temperature plasma (energy)
  • So, we expect
  • ISXR ? IHXR dt

101
  • Inference of transport processes from observations

102
The Continuity Equation
103
Using Spatially Resolved Hard X-ray Data to Infer
Physical Processes
  • Electron continuity equation
  • ? F(E,N)/ ? N ? / ? E F(E,N) dE/dN 0
  • Solve for dE/dN
  • dE/dN - 1 / F(E,N) ? ? F(E,N)/ ? N dE
  • So observation of F(E,N) gives direct empirical
    information on physical processes (dE/dN) at work

104
April 15, 2002 event
105
April 15, 2002 event
106
April 15, 2002 event
107
April 15, 2002 event
108
Subsource Spectra
109
Subsource Spectra
Photon
110
Subsource Spectra
Photon
Electron
111
Subsource Spectra
Photon
Electron
Middle region spectrum is softer
112
Subsource Spectra
Photon
Electron
Middle region spectrum is softer Spectrum
reminiscent of collisional variation
113
Subsource Spectra
Photon
Electron
Middle region spectrum is softer Spectrum
reminiscent of collisional variation But dE/dN
-1/F(E,N) ? ? F(E,N)/ ? N dE ?
114
Variation of Source Size with Energy
  • Collisions dE/ds -n/E ? L ?2
  • In general, L increases with ?
  • (increased penetration of higher energy
    electrons)
  • General dE/ds -n/E? ? L ?1?
  • Thermal T To exp(-s2/2?2) ? L(?,To,?)
  • In general, L decreases with ?
  • (highest-energy emission near temperature peak)

115
10 - 12 keV
14 - 16 keV
19 - 22 keV
26 30 keV
116
Source Size vs Energy
To 108 K
117
Histogram of Slopes
NOT compatible with slope of 2!
118
Significance of Observed Slope
  • Collisions
  • dE/ds - n/E?, ?1, slope 1 ? 2

119
Significance of Observed Slope
  • Collisions
  • dE/ds - n/E?, ?1, slope 1 ? 2
  • Observed mean slope 1 ? 0.5

120
Significance of Observed Slope
  • Collisions
  • dE/ds - n/E?, ?1, slope 1 ? 2
  • Observed mean slope 1 ? 0.5
  • ? -0.5

121
Significance of Observed Slope
  • Collisions
  • dE/ds - n/E?, ?1, slope 1 ? 2
  • Observed mean slope 1 ? 0.5
  • ? -0.5
  • ? dE/ds - nE0.5 -nv (??)
Write a Comment
User Comments (0)
About PowerShow.com