A new family of expander Cayley graphs - PowerPoint PPT Presentation

1 / 58
About This Presentation
Title:

A new family of expander Cayley graphs

Description:

... a group G has the commutator property (CP) if every element in G is a commutator. ... styles. Second level. Third level. Fourth level. Fifth level **! S ... – PowerPoint PPT presentation

Number of Views:114
Avg rating:3.0/5.0
Slides: 59
Provided by: eyal7
Category:

less

Transcript and Presenter's Notes

Title: A new family of expander Cayley graphs


1
A new family of expander Cayley graphs (?)
  • Eyal Rozenman, Hebrew University
  • Aner Shalev, Hebrew University
  • Avi Wigderson, IAS
  • You need the TexPoint PowerPoint add-in to view
    this presentation properly
  • Download it from http//raw.cs.berkeley.edu/texpoi
    nt/

2
Definitions
Undirected, regular (multi)graphs. Definition.
The 2nd eigenvalue of a d-regular X ?(X) max
(AX /d) v v1 , v ? 1 ?(X) ?
0,1 Definition. Xn is an expander family if
?(Xn)? ?lt1 Equivalent RW on X converges in time
O(logX)
3
Cayley graphs
  • G a finite group
  • U ½ G a (symmetric) set of generators.
  • Definition Cayley graph C(G,U)
  • Vertices elements of G
  • Edges (g, gu) for all u?U.
  • C(G,U) is regular with degree U.
  • C(G,U) is connected , U generates G.

4
Our Sequence of groups
  • Gn Even symmetries of a (rooted) d-regular
    tree.
  • degree (children) d (fixed). Depth n

5
Our Sequence of groups
  • Gn Even symmetries of a (rooted) d-regular
    tree.
  • degree (children) d (fixed). Depth n
  • Depth 1 tree symmetries alternating group Ad

6
Our Sequence of groups
  • Gn Even symmetries of a (rooted) d-regular
    tree.
  • degree (children) d (fixed). Depth n
  • Depth 1 tree symmetries alternating group Ad
  • Theorem Under some assumption on Ad
  • Every Gn has (const. ) expanding generators.

7
Assumption on alternating gp. Ad
  • Our construction is based on
  • Assumption 9 U ½ Ad ( G1) such that
  • U d1/30
  • ?(Ad,U) 1/1000
  • This is an Open problem (will discuss this more
    later)

8
Main theorem
  • Thm RSW 9 Un ½ Gn such that
  • Un d1/7 (constant - independent of n)
  • C(Gn,Un) is a good expander (?(GnUn) 1/1000)

9
Main theorem
  • Thm RSW 9 Un ½ Gn such that
  • Un d1/7 (constant - independent of n)
  • C(Gn,Un) is a good expander (?(GnUn) 1/1000)
  • Proof is by induction on n (base of induction is
    the assumption on Ad)

10
Inductive definition of groups
  • G1 Ad, the alternating group.
  • Gn1 Gno Ad (wreath product)
  • Gn1 (?,x1,x2,,xd) ?2 Ad,xi 2 G

11
Inductive definition of groups
  • G1 Ad, the alternating group.
  • Gn1 Gno Ad (wreath product)
  • Gn1 (?,x1,x2,,xd) ?2 Ad,xi 2 G
  • Multiplication rule
  • (?,x1,x2,,xd) (?,y1,y2,,yd) (??, x?(1),y1,
    x ?(2)y2,, x ?(d)yd)

12
Inductive definition of groups
  • G1 Ad, the alternating group.
  • Gn1 Gno Ad (wreath product)
  • Gn1 (?,x1,x2,,xd) ?2 Ad,xi 2 G
  • Multiplication rule
  • (?,x1,x2,,xd) (?,y1,y2,,yd) (??, x?(1),y1,
    x ?(2)y2,, x ?(d)yd)
  • Example conjugation
  • g(?,1,,1) , x (1,x1,,xd)
  • g-1 x g(1,x?(1),,x?(d))

13
Generating sets
  • U1 ½ Ad small generating set
  • Un ½ Gn small generating set
  • Goal Un1 ½ Gn1 small generating set

14
Generating sets
  • U1 ½ Ad small generating set
  • Un ½ Gn small generating set
  • Goal Un1 ½ Gn1 small generating set
  • Embed U1 ½ Gn (u,1,1,L,1) u 2 U1
  • Generates all (s,1,1,L,1) s 2 Ad

U1 ½ Ad
1 2 Gn
1 2 Gn
1 2 Gn
1 2 Gn
15
Generating sets
  • Pick some x(1,x1,x2,L,xd) 2 Gn1

1
x1 2 Gn
x2 2 Gn
xd-1 2 Gn
xd 2 Gn
16
Generating sets
  • Pick some x(1,x1,x2,L,xd) 2 Gn1
  • Conjugating x by (s,1,1,L,1) permutes x by s
  • We get all (even) permutations of x.

1
x1 2 Gn
x2 2 Gn
xd-1 2 Gn
xd 2 Gn
17
Generating sets
  • Pick some x(1,x1,x2,L,xd) 2 Gn1
  • Conjugating x by (s,1,1,L,1) permutes x by s
  • We get all (even) permutations of x.
  • If the permutations of x generate (Gn)d
  • Then U1 x generates Gn1

1
x1 2 Gn
x2 2 Gn
xd-1 2 Gn
xd 2 Gn
18
Generating sets
  • Necessary condition x1,x2,L,xd generates Gn

1
x1 2 Gn
x2 2 Gn
xd-1 2 Gn
xd 2 Gn
19
Generating sets
  • Necessary condition x1,x2,L,xd generates Gn
  • Un generates Gn. Unu1,u2,?,up. Suppose p
    divides d
  • Put x (u1,u1,?,u1, u2,u2,?,u2,?, up,up,?,up)

1
x1 2 Gn
x2 2 Gn
xd-1 2 Gn
xd 2 Gn
20
Generating sets
  • Necessary condition x1,x2,L,xd generates Gn
  • Un generates Gn. Unu1,u2,?,up. Suppose p
    divides d
  • Put x (u1,u1,?,u1, u2,u2,?,u2,?, up,up,?,up)
  • Define Un(d) the orbit of x under Ad.

1
x1 2 Gn
x2 2 Gn
xd-1 2 Gn
xd 2 Gn
21
Generating sets
  • Necessary condition x1,x2,L,xd generates Gn
  • Un generates Gn. Unu1,u2,?,up. Suppose p
    divides d
  • Put x (u1,u1,?,u1, u2,u2,?,u2,?, up,up,?,up)
  • Define Un(d) the orbit of x under Ad.
  • Does Un(d) generate (Gn)d ?
  • Is it expanding ?

1
x1 2 Gn
x2 2 Gn
xd-1 2 Gn
xd 2 Gn
22
Algebraic Zig-Zag theorem ALW
  • If
  • ?( (Gn)d, Un(d) ) 1/50
  • ?(Ad,U1) 1/1000

23
Algebraic Zig-Zag theorem ALW
  • If
  • ?( (Gn)d, Un(d) ) 1/50
  • ?(Ad,U1) 1/1000
  • Then
  • 9 W½ Gn1 ( Gn o Ad)
  • ?(Gn1, W) 1/50 1/1000

24
Algebraic Zig-Zag theorem ALW
  • If
  • ?( (Gn)d, Un(d) ) 1/50
  • ?(Ad,U1) 1/1000
  • Then
  • 9 W½ Gn1 ( Gn o Ad)
  • ?(Gn1, W) 1/50 1/1000
  • W U12 (Important! W is a func. of
    U1const.)

25
Proof of main theorem
  • Induction assumption 9 Un ½ Gn , ?(Gn,Un)
    1/1000

26
Proof of main theorem
  • Induction assumption 9 Un ½ Gn , ?(Gn,Un)
    1/1000
  • Main Lemma ?( (Gn)d, Un(d) ) 1/50 (for good
    G,U)

27
Proof of main theorem
  • Induction assumption 9 Un ½ Gn , ?(Gn,Un)
    1/1000
  • Main Lemma ?( (Gn)d, Un(d) ) 1/50 (for good
    G,U)
  • Zigzag thm RVW,ALW
  • 9 W½ Gn1 ( Gn o Ad)
  • ?(Gn1, W) 1/50 1/1000
  • W U12

28
Proof of main theorem
  • Induction assumption 9 Un ½ Gn , ?(Gn,Un)
    1/1000
  • Main Lemma ?( (Gn)d, Un(d) ) 1/50 (for good
    G,U)
  • Zigzag thm RVW,ALW
  • 9 W½ Gn1 ( Gn o Ad)
  • ?(Gn1, W) 1/50 1/1000
  • W U12
  • Define Un1 W2 all words of length 2 in W
  • Un1 U14 d1/7
  • ?(Gn1, Un1) (1/50 1/1000)2 1/50

29
Main Lemma
  • Main Lemma Given
  • U ½ G
  • ?(G, U) 1/1000
  • then
  • - ?( (G)d, U(d)) 1/50 (for good G,U)

30
Main Lemma
  • Main Lemma Given
  • U ½ G
  • ?(G, U) 1/1000
  • then
  • - ?( (G)d, U(d)) 1/50 (for good G,U)
  • Example
  • ?( (G)d, Ud ) 1/1000
  • But Ud is NOT one Ad orbit

31
Main Lemma
  • Main Lemma Given
  • U ½ G small enough
  • ?(G, U) 1/1000
  • then
  • - ?( (G)d, U(d)) 1/50 (for good G,U)
  • Example
  • ?( (G)d, Ud ) 1/1000
  • But Ud is NOT one Ad orbit
  • The idea when U ltlt d
  • A random element of Ud is more or less in U(d).
  • So U(d) approximates Ud well.

32
Main Lemma-reduction to G G
  • When/Why is C( Gd, U(d)) connected ?

33
Main Lemma-reduction to G G
  • When/Why is C( Gd, U(d)) connected ?
  • (u1 , u2 , u3 , L,ud) 2 U(d)
  • (u2-1, u1 1 , u3-1 , L,ud-1) 2 U(d)

34
Main Lemma-reduction to G G
  • When/Why is C( Gd, U(d)) connected ?
  • (u1 , u2 , u3 , L,ud) 2 U(d)
  • (u2-1, u1 1 , u3-1 , L,ud-1) 2 U(d)
  • multiply to get
  • (u1, u2-1 , u2 u11 , 1 , L , 1)

35
Main Lemma-reduction to G G
  • When/Why is C( Gd, U(d)) connected ?
  • (u1 , u2 , u3 , L,ud) 2 U(d)
  • (u2-1, u1 1 , u3-1 , L,ud-1) 2 U(d)
  • multiply to get
  • (u1, u2-1 , u2 u11 , 1 , L , 1)
  • Setting u2 1 (assume 1 2 U) we generate all
    elements
  • (g , g-1 , 1 , 1, , 1) g 2 U

U1
36
Main Lemma-reduction to G G
  • When/Why is C( Gd, U(d)) connected ?
  • (u1 , u2 , u3 , L,ud) 2 U(d)
  • (u2-1, u1 1 , u3-1 , L,ud-1) 2 U(d)
  • multiply to get
  • (u1, u2-1 , u2 u11 , 1 , L , 1)
  • Setting u2 1 (assume 1 2 U) we generate all
    elements
  • (g , g-1 , 1 , 1, , 1) g 2 U
  • If first two coordinates generate G G we are
    done
  • Expansion also follows

U1
37
Expansion on G G
  • X ½ G
  • Z ½ G G
  • Z (x,x-1) x 2 X (completely correlated!)

38
Expansion on G G
  • X ½ G
  • Z ½ G G
  • Z (x,x-1) x 2 X (completely correlated!)
  • Suppose ?(G,X) 1-?
  • Is ?(G G, Z) 1-f(?) for some f?

39
Expansion on G G
  • X ½ G
  • Z ½ G G
  • Z (x,x-1) x 2 X (completely correlated!)
  • Suppose ?(G,X) 1-?
  • Is ?(G G, Z) 1-f(?) for some f?
  • G abelian NO.
  • C (G G, Z) is disconnected.
  • Connected component of (1,1) is (g,g-1) g 2 G

40
Expansion on G G
  • X ½ G
  • Z ½ G G
  • Z (x,x-1) x 2 X (completely correlated!)
  • Suppose ?(G,X) 1-?
  • Is ?(G G, Z) 1-f(?) for some f?
  • G abelian NO.
  • C (G G, Z) is disconnected.
  • Connected component of (1,1) is (g,g-1) g 2 G
  • If Y (x,x) x 2 X then C(G G, Y) is
    disconnected

41
Expansion on G G decorrelating the gens.
  • BUT If for every x 2 G, x ax,bx ax-1 bx-1
    ax bx

42
Expansion on G G decorrelating the gens.
  • BUT If for every x 2 G, x ax,bx ax-1 bx-1
    ax bx
  • Xc ax, bx, (ax-1bx-1) x 2 X (
    inverses)
  • Z ½ G G
  • Z (x,x-1) x 2 Xc

43
Expansion on G G decorrelating the gens.
  • BUT If for every x 2 G, x ax,bx ax-1 bx-1
    ax bx
  • Xc ax, bx, (ax-1bx-1) x 2 X (
    inverses)
  • Z ½ G G
  • Z (x,x-1) x 2 Xc
  • (ax-1bx-1 , bxax) 2 Z
  • (ax , ax-1) 2 Z
  • (bx , bx-1) 2 Z

44
Expansion on G G decorrelating the gens.
  • BUT If for every x 2 G, x ax,bx ax-1 bx-1
    ax bx
  • Xc ax, bx, (ax-1bx-1) x 2 X (
    inverses)
  • Z ½ G G
  • Z (x,x-1) x 2 Xc
  • (ax-1bx-1 , bxax) 2 Z
  • (ax , ax-1) 2 Z
  • (bx , bx-1) 2 Z
  • (x , 1) is generated by Z

45
Expansion on G G decorrelating the gens.
  • BUT If for every x 2 G, x ax,bx ax-1 bx-1
    ax bx
  • Xc ax, bx, (ax-1bx-1) x 2 X (
    inverses)
  • Z ½ G G
  • Z (x,x-1) x 2 Xc
  • (ax-1bx-1 , bxax) 2 Z
  • (ax , ax-1) 2 Z
  • (bx , bx-1) 2 Z
  • (x , 1) is generated by Z
  • If ?(G,X) 1-? then ?(G G, Z) 1-(? /500X2)

46
Commutator representation in Gn
  • Def a group G has the commutator property (CP) if
    every element in G is a commutator.

47
Commutator representation in Gn
  • Def a group G has the commutator property (CP) if
    every element in G is a commutator.
  • Theorem ORR, 50s Ad has (CP)

48
Commutator representation in Gn
  • Def a group G has the commutator property (CP) if
    every element in G is a commutator.
  • Theorem ORR, 50s Ad has (CP)
  • Theorem N 03 If G has (CP) then G o Ad has
    (CP)

49
Commutator representation in Gn
  • Def a group G has the commutator property (CP) if
    every element in G is a commutator.
  • Theorem ORR, 50s Ad has (CP)
  • Theorem N 03 If G has (CP) then G o Ad has
    (CP)
  • Proof Reduce to the system of eqs
  • x1 yh(1) xs(1)-1 yt(1) a1
  • x2 yh(2) xs(2)-1 yt(2) a2
  • xd yh(d) xs(d)-1 yt(d) ad
  • 2d variables xi 2 G, yi 2 G, d constants ai 2
    G.
  • 3 arbitrary permutations h,s,t 2 Sd

50
Expansion on alternating gp. Ad
  • Our construction was based on
  • Assumption 9 U ½ Ad ( G1) such that
  • U d1/30
  • ?(Ad,U) 1/1000

51
Expansion on alternating gp. Ad
  • Our construction was based on
  • Assumption 9 U ½ Ad ( G1) such that
  • U d1/30
  • ?(Ad,U) 1/1000
  • For any group G, O(logG) elements suffice AR
  • logG O(dlogd) in our case)

52
Expansion on alternating gp. Ad
  • Our construction was based on
  • Assumption 9 U ½ Ad ( G1) such that
  • U d1/30
  • ?(Ad,U) 1/1000
  • For any group G, O(logG) elements suffice AR
  • logG O(dlogd) in our case)
  • Abelian G needs ?(log G) generators

53
Expansion on alternating gp. Ad
  • Reasons to believe there are few expanding
    generators

54
Expansion on alternating gp. Ad
  • Reasons to believe there are few expanding
    generators
  • 2 random elements generate Ad

55
Expansion on alternating gp. Ad
  • Reasons to believe there are few expanding
    generators
  • 2 random elements generate Ad D
  • 9 7 elements in Ad such that Cayley graph has
    diameter O( logAd ) BL?

56
Expansion on alternating gp. Ad
  • Reasons to believe there are few expanding
    generators
  • 2 random elements generate Ad D
  • 9 7 elements in Ad such that Cayley graph has
    diameter O( logAd ) BKL
  • A conjecture (Aldous) implies O(d) transpositions
    suffice for expansion (transpositions are weak!)

57
Expansion on alternating gp. Ad
  • Reasons to believe there are few expanding
    generators
  • 2 random elements generate Ad D
  • 9 7 elements in Ad such that Cayley graph has
    diameter O( logAd ) BL?
  • A conjecture (Aldous) implies O(d) transpositions
    suffice for expansion (transpositions are weak!)
  • A conjecture (Wigderson) implies O(d1/2)
    permutations suffice for expansion.

58
D
Write a Comment
User Comments (0)
About PowerShow.com