Reduction of Image Noise in Elastography - PowerPoint PPT Presentation

1 / 18
About This Presentation
Title:

Reduction of Image Noise in Elastography

Description:

Thus, after target compression the spacing between consecutive window pairs is ... before and after compression contains elasticity information (Virtual Spring) ... – PowerPoint PPT presentation

Number of Views:235
Avg rating:3.0/5.0
Slides: 19
Provided by: Har48
Category:

less

Transcript and Presenter's Notes

Title: Reduction of Image Noise in Elastography


1
Reduction of Image Noise in Elastography
  • By Ignacio Cespedes Jonathan Ophir
  • Presented by Harish Krishnaswamy
  • Partner Parker Wilson
  • Mentors Emad Boctor, Dr. Russell Taylor

2
Paper Selection
  • Basis of Ophirs Algorithm.
  • Core algorithm in retrieving and refining strain
    data using real Analytical Signals.
  • We use this in addition to Lorenzs Algorithm to
    develop our Elastogram.

3
Introduction
  • Elastography is a method of imaging the elastic
    properties of compliant tissues which produces
    gray scale elasticity images called Elastograms.
  • The method estimates local strain directly from
    estimates of one dimensional changes in small
    tissue elements.
  • Using A-lines obtained pre and post target
    compression.

4
Problem
  • However, Elastograms of Phantoms with homogenous
    elastic properties exhibit a noisy appearance.
  • Mainly due to nonstationary relation between pre
    and post compression signals.
  • How to reduce the strain modulation artifact
    while maintaining improved spatial resolution?

5
Strategy
  • Two methods to reduce the strain modulation
    artifact
  • Reduce the signal amplitude swings within the
    observation windows by logarithmically
    compressing the rf signal.
  • Reduce the strain modulation by temporally
    stretching the signal obtained after compression.

6
Elastographic Noise
  • Factors that contribute to the noisy appearance
    of Elastograms.
  • Elasticity of Phantom is not globally
    homogeneous.
  • Errors in time shift correlation estimations
    result in temporal uncertainty that causes random
    noise in local strain estimates.
  • All of which contribute to degraded
    cross-correlation.

7
Strain Modulation Artifact
  • Estimates of strain are obtained by measuring the
    displacement between pre and post target
    compression.
  • Consecutive observation window pairs are taken
    with a predetermined spacing of ?T.
  • Thus, after target compression the spacing
    between consecutive window pairs is reduced by
    amount ?t(i)-?t(i-1)

8
Ophir et al.
Two consecutive Non overlapping windows. Note the
reduced separation between pre and post target
compression A - Lines
9
Concepts
  • Local Longitudinal Strain is given by
  • s(i) ?t(i) - ?t(i-1)/ ?T
  • Due to Deformation of rf signal after target
    compression we need to consider the following
    concepts
  • Interwindow Compression Spacing between
    consecutive window pairs before and after
    compression contains elasticity information
    (Virtual Spring).
  • Intrawindow Compression The signal from
    compressed tissue is distorted such that it
    resembles a time scared version of the pre-target
    compression signal.

10
Impaired Cross-Correlation
Ophir et al.
11
Theory
  • Logarithmic Compressing of rf Amplitude
  • Temporal stretching

Original Signal
Temporal Stretching
Compressed Signal
12
Experiment
  • Algorithms were tested on simulated data
    generated by a computer program.
  • Simulated program contained the following
  • An ultra sound transducer
  • A model for the compliant scattering medium
  • Simulated A-lines were constructed by adding up
    the impulse responses of the transducer at the
    locations of all scatters in a defined region of
    interest.

13
Ophir et al.
Equivalent spring model for columnar tissue
element as used in the simulation program.
Springs represent segments of the tissue column
with different Youngs moduli.
14
Theory Cont.
  • Logarithmic amplitude compression is applied to
    digitized rf signal
  • One Bit Quantization
  • If y(n) 0 then y(n) 1.0
  • If y(n) 0 then y(n) -1.0
  • Temporal stretch was applied using a linear
    interpolation Algorithm.

15
Analysis
  • Quantification of Image Quality was conducted
    using mean-to-standard deviation ratio (MDSR)
  • Where µs and ss are respectively the mean and
    standard deviation of the strain in a region of
    uniform elasticity.

16
Results
Ophir et al.
17
Results Cont.
MDSR Values
Ophir et al.
  • MDSR is lowest without log compression,
    increasing rapidly for log compression strength
    values up to CS100, then decreasing slowly for
    larger log compression strengths.
  • One bit transformation yields MSDR that is
    inferior to the log compression case.
  • This is a result of the reduced distortion of
    the pre and post compression signal.

18
Conclusion
  • Logarithmic amplitude compression achieves the
    desired reduction of the variability of the rf
    envelope.
  • Improvement in MSDR using logarithmic amplitude
    compression is achieved without sacrifice in
    spatial resolution.
  • Note Resolution worsens when temporal
    stretching is applied.
Write a Comment
User Comments (0)
About PowerShow.com