CMOS VLSI DESIGN CMOS VLSI Tasarim - PowerPoint PPT Presentation

1 / 74
About This Presentation
Title:

CMOS VLSI DESIGN CMOS VLSI Tasarim

Description:

Latch-up ... Latch up. MOS SPICE PARAMETRELERI. Parazitik SPICE Parametreleri ... Avoid using diffusion runners for wires! Polysilicon has lower C but high R ... – PowerPoint PPT presentation

Number of Views:268
Avg rating:3.0/5.0
Slides: 75
Provided by: next90
Category:

less

Transcript and Presenter's Notes

Title: CMOS VLSI DESIGN CMOS VLSI Tasarim


1
CMOS VLSI DESIGNCMOS VLSI Tasarim
  • Hafta 4
  • Ali Ziya Alkar

2
Standard Cell Layout Methodology
3
Two Versions of (ab).c
4
Logic Graph
5
Consistent Euler Path
6
Example x abcd
7
CMOS kapasiteleri
  • Oksid Kapasitesi
  • Kapi Sigaç Örtüsme Kapasitesi
  • Kapi Akaç Örtüsme Kapasitesi
  • Kapi Kanal-Bulk Kapasitesi
  • Birlesim Kapasitesi
  • Akaçtan Bulka birlesim
  • Sigaçtan Bulka birlesim

8
Oksid-Örtüsme Kapasiteleri
Ld kapasitesi her iki tarafta da oksidin altinda
kalir Leff L drawn 2Ld Toplam Örtüsme
Kapasitesi
9
Oksid-Kanal Kapasitesi
  • Kapi-Akaç
  • Kapi-Sigaç
  • Kapi-Bulk

Cut off durumu
Bu durumda kanal olmadigindan dolayi toplam
kapasite CcCgb dir.
10
Oksid Kapasitesi
11
Oksid Kapasitesi
12
Oksid Kapasiteleri
Cut-off
Resistive
Saturation
Sayisal Tasarimdaki En önemli Bölgeler SAT ve
CUTOFF
13
Kapi Kapasiteleri
14
Baglanti - Junction Kapasitesi
Kanal-Implant durma noktasi
Yan Duvar
Sigaç
W
N
D
Alt
x
Yan Duvar
j
Kanal
L
Alttas
N
S
A
15
Baglanti - Junction Kapasitesi
0 bias voltajindaki bir PN baglantisindaki
kapasite
Genel olarak, m degeri 0.3-0.5 arasi kullanilir.
16
Baglanti - Junction Kapasitesi
17
Baglanti Kapasitesi
18
0.25 mm CMOS süreçte kapasiteler
19
Mikron alti - Sub-Micron - MOS Transistor
  • Esik Voltaji Degisimleri
  • Esikalti Iletim
  • Parazitik dirençler

20
Esik voltaji Degisimleri
21
Esik Voltaji Degisimleri
Low
V

threshold
Long-channel threshold
DS
VDS
L
Threshold as a function of
Drain-induced barrier lowering
the length (for low
V
)
(for low
L
)
DS
22
Esik voltaji Degisimleri
23
Hot carrier
The drain avalanche hot carrier (DAHC) injection
is said to produce the worst device degradation
under normal operating temperature range. This
occurs when a high voltage applied at the drain
under non-saturated conditions (VDgtVG) results in
very high electric fields near the drain, which
accelerate channel carriers into the drain's
depletion region. Studies have shown that the
worst effects occur when VD 2VG. The
acceleration of the channel carriers causes them
to collide with Si lattice atoms, creating
dislodged electron-hole pairs in the process. 
This phenomenon is known as impact ionization,
with some of the displaced e-h pairs also gaining
enough energy to overcome the electric potential
barrier between the silicon substrate and the
gate oxide.                                
24
  • Under the influence of drain-to-gate field, hot
    carriers that surmount the substrate-gate oxide
    barrier get injected into the gate oxide layer
    where they are sometimes trapped. This hot
    carrier injection process occurs mainly in a
    narrow injection zone at the drain end of the
    device where the lateral field is at its maximum.
         
  • Hot carriers can be trapped at the Si-SiO2
    interface (hence referred to as 'interface
    states') or within the oxide itself, forming a
    space charge (volume charge) that increases over
    time as more charges are trapped. These trapped
    charges shift some of the characteristics of the
    device, such as its threshold voltage (Vth) and
    its conveyed conductance (gm)
  • Injected carriers that do not get trapped in the
    gate oxide become gate current. On the other
    hand, majority of the holes from the e-h pairs
    generated by impact ionization flow back to the
    substrate, comprising a large portion of the
    substrate's drift current. Excessive substrate
    current may therefore be an indication of hot
    carrier degradation.  In gross cases, abnormally
    high substrate current can upset the balance of
    carrier flow and facilitate latch-up.

25
  • Channel hot electron (CHE) injection occurs when
    both the gate voltage and the drain voltage are
    significantly higher than the source voltage,
    with VGVD.  Channel carriers that travel from
    the source to the drain are sometimes driven
    towards the gate oxide even before they reach the
    drain because of the high gate voltage.     

                      Figure 2.  CHE injection
involves propelling of carriers in the channel
toward the oxide even before they reach the drain
area source Hitachi Semiconductor Reliability
Handbook
26
  • Substrate hot electron (SHE) injection occurs
    when the substrate back bias is very positive or
    very negative, i.e.,  VBgtgt 0. Under this
    condition, carriers of one type in the substrate
    are driven by the substrate field toward the
    Si-SiO2 interface. As they move toward the
    substrate-oxide interface, they further gain
    kinetic energy from the high field in surface
    depletion region.  They eventually overcome the
    surface energy barrier and get injected into the
    gate oxide, where some of them are trapped.
  •           

                        Figure 3.  SHE injection
involves trapping of carriers from the
substrate source Hitachi Semiconductor
Reliability Handbook 
27
Esik alti iletim
Vgs lt Vt için de iletim olmaktadir!Esik alti
kaçak akimi akmaktadir.
Egim Faktörü
S DVGS ID2/ID1 10 durumunda
S degeri tipik olarak 60 .. 100 mV
28
Esik alti ID vs VGS
VDS from 0 to 0.5V
29
Esik altiID vs VDS
VGS from 0 to 0.3V
30
Parazitik Dirençler
31
Kaçak Akim
  • Kaçak akimin etkileri
  • Stand by durumunda bosa harcanan güç
  • Kaçak akim isinin artmasina neden olur
  • Dogru ve güvenilirlikten uzaklasma
  • Çözüm
  • Uzun kanal
  • Düsük Vds voltajlari
  • Yüksek Vt

32
Kaçak Akim
  • Trade off durumu
  • Yüksek hiz için düsük Vt ve L degerleri gerekir
  • Düsük kaçak için yüksek Vt ve L degeri gerekir.
  • Yeniden boyutlandirma
  • Lyi ve Vtyi düsürür
  • Ancak her YB x10 kaçagi artirir.
  • Sonuç
  • Yüksek Vtli transistörleri güç tasarruf
    durumunda
  • Düsük Vtlileri hiz gerektiren kritik yollarda
    kullan

33
Latch-up
  • An SCR is a 3-terminal 4-layered p-n-p-n device
    that basically consists of a PNP transistor and
    an NPN transistor as shown in Figure on right. An
    SCR is 'off' during its normal state but will
    conduct current in one direction (from anode to
    cathode) once triggered at its gate, and will do
    so continuously as long as the current through it
    stays above a 'holding' level.  This is easily
    seen in Figure 1, which shows that 'triggering'
    the emitter of T1 into conduction would inject
    current into the base of T2.  This would drive T2
    into conduction, which would forward bias the
    emitter-base junction of T1 further, causing T1
    to feed more current into the base of T2.  Thus,
    T1 and T2 would feed each other with currents
    that would keep both of them saturated

34
  • Kuyuya veya alttasa gelen akim BJTleri
    biaslayabilir.
  • Birinin ON olmasi positif geribesleme sonucu VDD
    ve GNDu birlestirir.
  • Çözüm Devredeki dirençleri düsürmek. Alttas
    Taplari (Substrate Tap) koymak
  • Veya yüksek akimalarda koruma çemberi (Guard
    Ring) önerilir.

35
Latch up
36
MOS SPICE PARAMETRELERI
37
Parazitik SPICE Parametreleri
38
SPICE Transistor Parametreleri
39
Hatlar
sematik
fiziksel
40
BaglantininYonga Üstünde Etkisi
41
Hat Modelleri
Capacitance-only
All-inclusive model
42
Baglantin Parazitik Etkisi
  • Interconnect parasitics
  • reduce reliability
  • affect performance and power consumption
  • Classes of parasitics
  • Capacitive
  • Resistive
  • Inductive

43
Baglantinin Dogasi
Global Interconnect
Source Intel
44
Baglanti
Kapasite
45
Baglanti Kapasitesi
46
(No Transcript)
47
Kapasite Parallel Plaka Modeli
48
Permitivite
49
Hat kapasitesi (0.25 mm CMOS)
50
Wire Capacitance
  • Wire has capacitance per unit length
  • To neighbors
  • To layers above and below
  • Ctotal Ctop Cbot 2Cadj

51
Capacitance Trends
  • Parallel plate equation C eA/d
  • Wires are not parallel plates, but obey trends
  • Increasing area (W, t) increases capacitance
  • Increasing distance (s, h) decreases capacitance
  • Dielectric constant
  • e ke0
  • e0 8.85 x 10-14 F/cm
  • k 3.9 for SiO2
  • Processes are starting to use low-k dielectrics
  • k ? 3 (or less) as dielectrics use air pockets

52
M2 Capacitance Data
  • Typical wires have 0.2 fF/mm
  • Compare to 2 fF/mm for gate capacitance

53
Diffusion Polysilicon
  • Diffusion capacitance is very high (about 2
    fF/mm)
  • Comparable to gate capacitance
  • Diffusion also has high resistance
  • Avoid using diffusion runners for wires!
  • Polysilicon has lower C but high R
  • Use for transistor gates
  • Occasionally for very short wires between gates

54
(No Transcript)
55
Standard Unite Kapasitesi
Her teknoloji alani için ayri ayri
hesaplanabilir. Önceki tablo kullanilir. Örnegin
5µ proses için A25 µm2 oldugundan ?Cg degeri
25 µm x 4 x 10-4 0.01 pf
56
Standard Unite Kapasitesi
57
Baglanti
Direnç
58
Hat Direnci
59
Hat Geometrisi
  • Pitch w s
  • Aspect ratio AR t/w
  • Old processes had AR ltlt 1
  • Modern processes have AR ? 2
  • Pack in many skinny wires

60
Katmanlar
  • AMI 0.6 mm process has 3 metal layers
  • Modern processes use 6-10 metal layers
  • Example
  • Intel 180 nm process
  • M1 thin, narrow (lt 3l)
  • High density cells
  • M2-M4 thicker
  • For longer wires
  • M5-M6 thickest
  • For VDD, GND, clk

61
Hat Direnci
  • r resistivity (Wm)

62
Hat Direnci
  • r resistivity (Wm)

63
Hat Direnci
  • r resistivity (Wm)
  • R? sheet resistance (W/?)
  • ? is a dimensionless unit(!)
  • Count number of squares
  • R R? ( of squares)

64
Metal Seçimi
  • Until 180 nm generation, most wires were aluminum
  • Modern processes often use copper
  • Cu atoms diffuse into silicon and damage FETs
  • Must be surrounded by a diffusion barrier

65
Sheet Resistance
  • Typical sheet resistances in 180 nm process

66
Direnç
  • Selective Technology Scaling
  • Use Better Interconnect Materials
  • reduce average wire-length
  • e.g. copper, silicides
  • More Interconnect Layers
  • reduce average wire-length

67
Polycide Gate MOSFET
Silicide
PolySilicon
SiO
2


n
n
p
68
Modern Baglantilar
69
Contacts Resistance
  • Contacts and vias also have 2-20 W
  • Use many contacts for lower R
  • Many small contacts for current crowding around
    periphery

70
Örnek Intel 0.25 micron Süreç
5 metal layers Ti/Al - Cu/Ti/TiN Polysilicon
dielectric
71
Lumped Model
72
Oneriler
73
(No Transcript)
74
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com