Title: CMOS VLSI DESIGN CMOS VLSI Tasarim
1CMOS VLSI DESIGNCMOS VLSI Tasarim
2Standard Cell Layout Methodology
3Two Versions of (ab).c
4Logic Graph
5Consistent Euler Path
6Example x abcd
7CMOS kapasiteleri
- Oksid Kapasitesi
- Kapi Sigaç Örtüsme Kapasitesi
- Kapi Akaç Örtüsme Kapasitesi
- Kapi Kanal-Bulk Kapasitesi
- Birlesim Kapasitesi
- Akaçtan Bulka birlesim
- Sigaçtan Bulka birlesim
8Oksid-Örtüsme Kapasiteleri
Ld kapasitesi her iki tarafta da oksidin altinda
kalir Leff L drawn 2Ld Toplam Örtüsme
Kapasitesi
9Oksid-Kanal Kapasitesi
- Kapi-Akaç
- Kapi-Sigaç
- Kapi-Bulk
Cut off durumu
Bu durumda kanal olmadigindan dolayi toplam
kapasite CcCgb dir.
10Oksid Kapasitesi
11Oksid Kapasitesi
12Oksid Kapasiteleri
Cut-off
Resistive
Saturation
Sayisal Tasarimdaki En önemli Bölgeler SAT ve
CUTOFF
13Kapi Kapasiteleri
14Baglanti - Junction Kapasitesi
Kanal-Implant durma noktasi
Yan Duvar
Sigaç
W
N
D
Alt
x
Yan Duvar
j
Kanal
L
Alttas
N
S
A
15Baglanti - Junction Kapasitesi
0 bias voltajindaki bir PN baglantisindaki
kapasite
Genel olarak, m degeri 0.3-0.5 arasi kullanilir.
16Baglanti - Junction Kapasitesi
17Baglanti Kapasitesi
180.25 mm CMOS süreçte kapasiteler
19 Mikron alti - Sub-Micron - MOS Transistor
- Esik Voltaji Degisimleri
- Esikalti Iletim
- Parazitik dirençler
20Esik voltaji Degisimleri
21Esik Voltaji Degisimleri
Low
V
threshold
Long-channel threshold
DS
VDS
L
Threshold as a function of
Drain-induced barrier lowering
the length (for low
V
)
(for low
L
)
DS
22Esik voltaji Degisimleri
23Hot carrier
The drain avalanche hot carrier (DAHC) injection
is said to produce the worst device degradation
under normal operating temperature range. This
occurs when a high voltage applied at the drain
under non-saturated conditions (VDgtVG) results in
very high electric fields near the drain, which
accelerate channel carriers into the drain's
depletion region. Studies have shown that the
worst effects occur when VD 2VG. The
acceleration of the channel carriers causes them
to collide with Si lattice atoms, creating
dislodged electron-hole pairs in the process.Â
This phenomenon is known as impact ionization,
with some of the displaced e-h pairs also gaining
enough energy to overcome the electric potential
barrier between the silicon substrate and the
gate oxide.                            Â
24- Under the influence of drain-to-gate field, hot
carriers that surmount the substrate-gate oxide
barrier get injected into the gate oxide layer
where they are sometimes trapped. This hot
carrier injection process occurs mainly in a
narrow injection zone at the drain end of the
device where the lateral field is at its maximum.
     - Hot carriers can be trapped at the Si-SiO2
interface (hence referred to as 'interface
states') or within the oxide itself, forming a
space charge (volume charge) that increases over
time as more charges are trapped. These trapped
charges shift some of the characteristics of the
device, such as its threshold voltage (Vth) and
its conveyed conductance (gm) - Injected carriers that do not get trapped in the
gate oxide become gate current. On the other
hand, majority of the holes from the e-h pairs
generated by impact ionization flow back to the
substrate, comprising a large portion of the
substrate's drift current. Excessive substrate
current may therefore be an indication of hot
carrier degradation. In gross cases, abnormally
high substrate current can upset the balance of
carrier flow and facilitate latch-up.
25- Channel hot electron (CHE) injection occurs when
both the gate voltage and the drain voltage are
significantly higher than the source voltage,
with VGVD. Channel carriers that travel from
the source to the drain are sometimes driven
towards the gate oxide even before they reach the
drain because of the high gate voltage. Â Â Â Â
                     Figure 2. CHE injection
involves propelling of carriers in the channel
toward the oxide even before they reach the drain
area source Hitachi Semiconductor Reliability
Handbook
26- Substrate hot electron (SHE) injection occurs
when the substrate back bias is very positive or
very negative, i.e., VBgtgt 0. Under this
condition, carriers of one type in the substrate
are driven by the substrate field toward the
Si-SiO2 interface. As they move toward the
substrate-oxide interface, they further gain
kinetic energy from the high field in surface
depletion region. They eventually overcome the
surface energy barrier and get injected into the
gate oxide, where some of them are trapped. - Â Â Â Â Â Â Â Â Â Â
                       Figure 3. SHE injection
involves trapping of carriers from the
substrate source Hitachi Semiconductor
Reliability HandbookÂ
27Esik alti iletim
Vgs lt Vt için de iletim olmaktadir!Esik alti
kaçak akimi akmaktadir.
Egim Faktörü
S DVGS ID2/ID1 10 durumunda
S degeri tipik olarak 60 .. 100 mV
28Esik alti ID vs VGS
VDS from 0 to 0.5V
29Esik altiID vs VDS
VGS from 0 to 0.3V
30Parazitik Dirençler
31Kaçak Akim
- Kaçak akimin etkileri
- Stand by durumunda bosa harcanan güç
- Kaçak akim isinin artmasina neden olur
- Dogru ve güvenilirlikten uzaklasma
- Çözüm
- Uzun kanal
- Düsük Vds voltajlari
- Yüksek Vt
32Kaçak Akim
- Trade off durumu
- Yüksek hiz için düsük Vt ve L degerleri gerekir
- Düsük kaçak için yüksek Vt ve L degeri gerekir.
- Yeniden boyutlandirma
- Lyi ve Vtyi düsürür
- Ancak her YB x10 kaçagi artirir.
- Sonuç
- Yüksek Vtli transistörleri güç tasarruf
durumunda - Düsük Vtlileri hiz gerektiren kritik yollarda
kullan
33Latch-up
- An SCR is a 3-terminal 4-layered p-n-p-n device
that basically consists of a PNP transistor and
an NPN transistor as shown in Figure on right. An
SCR is 'off' during its normal state but will
conduct current in one direction (from anode to
cathode) once triggered at its gate, and will do
so continuously as long as the current through it
stays above a 'holding' level. This is easily
seen in Figure 1, which shows that 'triggering'
the emitter of T1 into conduction would inject
current into the base of T2. This would drive T2
into conduction, which would forward bias the
emitter-base junction of T1 further, causing T1
to feed more current into the base of T2. Thus,
T1 and T2 would feed each other with currents
that would keep both of them saturated
34- Kuyuya veya alttasa gelen akim BJTleri
biaslayabilir. - Birinin ON olmasi positif geribesleme sonucu VDD
ve GNDu birlestirir. - Çözüm Devredeki dirençleri düsürmek. Alttas
Taplari (Substrate Tap) koymak - Veya yüksek akimalarda koruma çemberi (Guard
Ring) önerilir.
35Latch up
36MOS SPICE PARAMETRELERI
37Parazitik SPICE Parametreleri
38SPICE Transistor Parametreleri
39Hatlar
sematik
fiziksel
40BaglantininYonga Üstünde Etkisi
41Hat Modelleri
Capacitance-only
All-inclusive model
42Baglantin Parazitik Etkisi
- Interconnect parasitics
- reduce reliability
- affect performance and power consumption
- Classes of parasitics
- Capacitive
- Resistive
- Inductive
43Baglantinin Dogasi
Global Interconnect
Source Intel
44Baglanti
Kapasite
45Baglanti Kapasitesi
46(No Transcript)
47Kapasite Parallel Plaka Modeli
48Permitivite
49Hat kapasitesi (0.25 mm CMOS)
50Wire Capacitance
- Wire has capacitance per unit length
- To neighbors
- To layers above and below
- Ctotal Ctop Cbot 2Cadj
51Capacitance Trends
- Parallel plate equation C eA/d
- Wires are not parallel plates, but obey trends
- Increasing area (W, t) increases capacitance
- Increasing distance (s, h) decreases capacitance
- Dielectric constant
- e ke0
- e0 8.85 x 10-14 F/cm
- k 3.9 for SiO2
- Processes are starting to use low-k dielectrics
- k ? 3 (or less) as dielectrics use air pockets
52M2 Capacitance Data
- Typical wires have 0.2 fF/mm
- Compare to 2 fF/mm for gate capacitance
53Diffusion Polysilicon
- Diffusion capacitance is very high (about 2
fF/mm) - Comparable to gate capacitance
- Diffusion also has high resistance
- Avoid using diffusion runners for wires!
- Polysilicon has lower C but high R
- Use for transistor gates
- Occasionally for very short wires between gates
54(No Transcript)
55Standard Unite Kapasitesi
Her teknoloji alani için ayri ayri
hesaplanabilir. Önceki tablo kullanilir. Örnegin
5µ proses için A25 µm2 oldugundan ?Cg degeri
25 µm x 4 x 10-4 0.01 pf
56Standard Unite Kapasitesi
57Baglanti
Direnç
58Hat Direnci
59Hat Geometrisi
- Pitch w s
- Aspect ratio AR t/w
- Old processes had AR ltlt 1
- Modern processes have AR ? 2
- Pack in many skinny wires
60Katmanlar
- AMI 0.6 mm process has 3 metal layers
- Modern processes use 6-10 metal layers
- Example
- Intel 180 nm process
- M1 thin, narrow (lt 3l)
- High density cells
- M2-M4 thicker
- For longer wires
- M5-M6 thickest
- For VDD, GND, clk
61Hat Direnci
62Hat Direnci
63Hat Direnci
- r resistivity (Wm)
- R? sheet resistance (W/?)
- ? is a dimensionless unit(!)
- Count number of squares
- R R? ( of squares)
64Metal Seçimi
- Until 180 nm generation, most wires were aluminum
- Modern processes often use copper
- Cu atoms diffuse into silicon and damage FETs
- Must be surrounded by a diffusion barrier
65Sheet Resistance
- Typical sheet resistances in 180 nm process
66Direnç
- Selective Technology Scaling
- Use Better Interconnect Materials
- reduce average wire-length
- e.g. copper, silicides
- More Interconnect Layers
- reduce average wire-length
67Polycide Gate MOSFET
Silicide
PolySilicon
SiO
2
n
n
p
68Modern Baglantilar
69Contacts Resistance
- Contacts and vias also have 2-20 W
- Use many contacts for lower R
- Many small contacts for current crowding around
periphery
70Örnek Intel 0.25 micron Süreç
5 metal layers Ti/Al - Cu/Ti/TiN Polysilicon
dielectric
71Lumped Model
72Oneriler
73(No Transcript)
74(No Transcript)