Covariance - PowerPoint PPT Presentation

1 / 31
About This Presentation
Title:

Covariance

Description:

Above average values of x are also above average values of y ... Note importance of ceteris paribus (all else constant) 18. 18. Predicting Job Performance ... – PowerPoint PPT presentation

Number of Views:68
Avg rating:3.0/5.0
Slides: 32
Provided by: johnw122
Category:

less

Transcript and Presenter's Notes

Title: Covariance


1
Covariance
(x,y)
x and y axes
2
Covariance
(x,y)
x and y axes
3
Covariance
Below average values of x are with above average
values of y
Above average values of x are also above average
values of y
So what happens on balance?
Below average values of x are also below average
values of y
Above average values of x are with below average
values of y
4
Covariance
What happens on balance?
Calculate the average of the squared deviations.
5
Covariance
What happens on balance?
Calculate the average of the squared deviations.
6
Covariance Example
Sxy 1.999
Wage
Aptitude
7
Correlation
rxy 0.476
Wage
Aptitude
8
Perfect Correlation
9
Fit That Line !
y2,5001,800x
y10,0001,000x
y13,000750x
10
Fit That Line !
y8,135 1,233xminimizes the squared errors
11
Word Problem
  • Students in a small class were polled by a
    researcher attempting to establish a relationship
    between hours of study in a week preceding a test
    and the result of the test.
  • If you get data on hours studied and exam
    results, which variable is the dependent
    variable? why?

12
Word Problem
y39.406 2.122x
13
Word Problem
Excel Regression Output (Data Analysis Add-In)
14
Word Problem
Excel Regression Output (StatPad Add-In)
15
The Nine Lives of Goldfish
16
Predicting Job Performance
Simple Regression Perform 3.956 0.022 age
17
Predicting Job Performance
Perform 4.865 0.037 age 0.011 seniority -
0.032 cognitive
Note importance of ceteris paribus (all else
constant)
18
Predicting Job Performance
Perform 4.865 0.037 age 0.011 seniority -
0.032 cognitive And holding seniority constant at
10 and cognitive constant at 1
19
Predicting Job Performance
Perform 4.865 0.037 age 0.011 seniority -
0.032 cognitive And holding seniority constant at
20 and cognitive constant at -1
With linear models, other values dont matter
just all else constant
20
Predicting Job Perf. With a Dummy Variable
Structured Interview Dummy Variable 1yes, 0no
21
Predicting Job Perf. With a Dummy Variable
Perform 4.820 0.037 age 0.010 seniority -
0.025 cognitive 2.850 structured interview
Dummy variable turns on and off with all else
constant.
22
Predicting Job Perf. With a Dummy Variable
Perform 4.865 0.037 age 0.010 seniority -
0.025 cognitive 2.850 structured interview And
holding seniority constant at 10 and cognitive
constant at 1
23
Predicting Job Perf. With a Dummy Variable
Note new y-intercept
Seniority20, Cognitive0
24
Multiple Dummy Variables
  • Source SS df MS
    Number of obs 3525
  • ---------------------------------------
    F( 14, 3510) 125.63
  • Model 5035.58483 14 359.684631
    Prob gt F 0.0000
  • Residual 10049.2032 3510 2.86302087
    R-squared 0.3338
  • ---------------------------------------
    Adj R-squared 0.3312
  • Total 15084.7881 3524 4.28058685
    Root MSE 1.692
  • --------------------------------------------------
    ----------------------------
  • perform Coef. Std. Err. t
    Pgtt 95 Conf. Interval
  • -------------------------------------------------
    ----------------------------
  • age -.0301543 .0016933 -17.808
    0.000 -.0334742 -.0268344
  • seniorty .0016888 .002762 0.611
    0.541 -.0037265 .007104
  • cognitve .0119113 .0286362 0.416
    0.677 -.0442339 .0680565
  • strucint 3.665569 .7995184 4.585
    0.000 2.098001 5.233137
  • job1 1.928286 .1277788 15.091
    0.000 1.677758 2.178814
  • job2 .426524 .1260009 3.385
    0.001 .1794815 .6735664
  • job3 .1407506 .1306411 1.077
    0.281 -.1153896 .3968908
  • job4 .2921016 .1347211 2.168
    0.030 .0279621 .5562411
  • job5 -1.069262 .1331017 -8.033
    0.000 -1.330227 -.8082974

25
Interaction Variables
  • Source SS df MS
    Number of obs 3525
  • ---------------------------------------
    F( 6, 3518) 121.08
  • Model 2581.89927 6 430.316544
    Prob gt F 0.0000
  • Residual 12502.8888 3518 3.55397635
    R-squared 0.1712
  • ---------------------------------------
    Adj R-squared 0.1697
  • Total 15084.7881 3524 4.28058685
    Root MSE 1.8852
  • --------------------------------------------------
    ----------------------------
  • perform Coef. Std. Err. t
    Pgtt 95 Conf. Interval
  • -------------------------------------------------
    ----------------------------
  • age -.006 .0034204 -1.705
    0.088 -.0125379 .0008743
  • seniorty .011 .0030589 3.559
    0.000 .0048879 .0168827
  • cognitve -.005 .0318774 -0.167
    0.867 -.0678283 .0571719
  • strucint 2.129 .8937022 2.383
    0.017 .3770909 3.881545
  • manual -1.513 .2391962 -6.327
    0.000 -1.982442 -1.044488
  • manl_age -.042 .004011 -10.439
    0.000 -.0497349 -.0340066
  • _cons 6.009 .2354444 25.526
    0.000 5.548275 6.471517
  • --------------------------------------------------
    ----------------------------
  • Note manual is a dummy variable indicating a
    manual occupation manl_age is age interacted
    with manual (i.e. manl_age manualage)

26
Interaction Variables
Note different slopes, too.
Seniority20, Cognitive0, StrucInt0
27
Another Interaction Variable Example
  • Source SS df MS
    Number of obs 15321
  • -------------------------------------------
    F( 5, 15315) 800.50
  • Model 804247599 5 160849520
    Prob gt F 0.0000
  • Residual 3.0773e09 15315 200936.252
    R-squared 0.2072
  • -------------------------------------------
    Adj R-squared 0.2069
  • Total 3.8816e09 15320 253367.252
    Root MSE 448.26
  • --------------------------------------------------
    ----------------------------
  • earnwkly Coef.
  • -------------------------------------------------
    ----------------------------
  • married 136.003
  • female -169.837
  • exper 2.946
  • parttime -227.716
  • exp_pt -1.896
  • _cons 700.802
  • --------------------------------------------------
    ----------------------------
  • exper is potential labor market experience
    (age-educ-6)

28
Interaction Variables
Married1, Female1
29
Adjusted R2
  • Source SS df MS
    Number of obs 3525
  • ---------------------------------------
    F( 14, 3510) 125.63
  • Model 5035.58483 14 359.684631
    Prob gt F 0.0000
  • Residual 10049.2032 3510 2.86302087
    R-squared 0.3338
  • ---------------------------------------
    Adj R-squared 0.3312
  • Total 15084.7881 3524 4.28058685
    Root MSE 1.692
  • --------------------------------------------------
    ----------------------------
  • perform Coef. Std. Err. t
    Pgtt 95 Conf. Interval
  • -------------------------------------------------
    ----------------------------
  • age -.0301543 .0016933 -17.808
    0.000 -.0334742 -.0268344
  • seniorty .0016888 .002762 0.611
    0.541 -.0037265 .007104
  • cognitve .0119113 .0286362 0.416
    0.677 -.0442339 .0680565
  • strucint 3.665569 .7995184 4.585
    0.000 2.098001 5.233137
  • job1 1.928286 .1277788 15.091
    0.000 1.677758 2.178814
  • job2 .426524 .1260009 3.385
    0.001 .1794815 .6735664
  • job3 .1407506 .1306411 1.077
    0.281 -.1153896 .3968908
  • job4 .2921016 .1347211 2.168
    0.030 .0279621 .5562411
  • job5 -1.069262 .1331017 -8.033
    0.000 -1.330227 -.8082974

30
Causality ?
For those who still doubt that Internet-related
investments will pay off, consider this A
PricewaterhouseCoopers study released earlier
this year found that productivity gains in 2000
were 2.7 times greater for Internet-enabled
companies than for businesses that have not
leveraged the Web. http//business.cisco.com/pr
od/tree.taf3Fpublic_viewtruekbns1asset_id669
66.html
31
Causality
  • Reasons for an estimated statistical relationship
  • The explanatory variable is the direct cause of
    the response (dependent) variable
  • The response variable is causing a change in the
    explanatory variable (reverse causality)
  • The explanatory variable is a contributing, but
    not sole, cause of the response variable
  • Confounding variables may exist
  • Both variables may stem from a common cause
  • Both variables are changing over time
  • Coincidence

Source Jessica M. Utts (1999) Seeing Through
Statistics, 2nd ed., Pacific Grove, CA Duxbury,
p. 186.
Write a Comment
User Comments (0)
About PowerShow.com