Title: 1' Exponential Probability Distribution
1?????4
- ??????????????????????????????????
2??????????????????????????????????
1. Exponential Probability Distribution 2.
Uniform Probability Distribution 3. Normal
Probability Distribution 4. Chi-Square
Probability Distribution 5. T Probability
Distribution 6. F Probability Distribution
34.1 The Exponential Random Variable
???????? 3.4 ????????????????????????????????????
????????? k ??????????????????????????????????
0,t ???????????????????????????????????????????
? ??????????????-?????????????????????? X
???????????????????????? P(?)?????????????????????
?
4??????????????????????????????????????????????
???????????????????????????????
?????????????????? Exponential ramdom variable
????????????????????????? ???????? T ???????
?????????????????????????????? (??????? k 0)
??? t ??? ????????????????????????????????????????
?????????
5??????????????????? ???
???????????????????????? T ???????????????-
?????? ?????????????????? Poisson event
????????????????????????????????????? 0 ???
t ??????? ???????????????????????????????
???????? k 0 ????????
6????????????????????????????? exponen-tial
distribution ?????????????????????
???????? t ???????
7????? T ????????????????????????????????????(
time interval with no arrivals of event) ?
average rate of event arrival
8?????????????????????????? exponential random
variable
???????????
9???????? (Truck arrival at a Site)
?????????????????????????????????? 10
??????????????????????????????????? 5 ??.
????????? ???????????????????????????????? (1)
??????????????????????????????????????????? 10
??? ??????????????????????? ???? 1 ???????
10(2) ????????????????????????????????? 2
??.??????????????????????????????????????? 10
??????????????? (3) ????????????????????????????
???????????? 1/4 ??. ??? 1/2 ??. ??????????????-
??????????? 10 ??????????
11?????? (1) ??? X ???????????????????????? 10 ???
??????????????????????????? 1 ??.
????????????????????? ????????????????? X
???????????????????????????????????????
?????????????????? ???????????????? ????
12??????????????? ??????????????????????????????????
????????????????? ??????????? ????????
trucks/hour, k10, t1 hour
13(2) ??? T ???????????????????????????????????? 10
??? ??????????? ????????????????
???????????? T ?????????????????
?????? ???????
14(3) ??????????????????????
????????? (1) ?????????
154.2 ????????????????????????? Uniform
????????????? X ?? p.d.f ?????????
x ??????????
??????? X ????????????????? Uniform
16???????????????????? (1) ???????? cumulative
distribution function of the uniform random
variable ???
17y
1
b - a
x
a
b
18??????????????????????????????????? ??? Uniform
19???????
20???????? 1 ??? X ??????????????
????????????????????????????????? (10,30)
???????????????????? X ??????? (?) ???????
10 ??? 15 (?) ?????????????????? 20
21(?)
??????
22(?)
23??????????? 2 An engineering project to be
completed anytime between Sept. 1 and Sept. 30 of
a year. (1) Calculate the probability that
the project is completed between Sept. 14 and
Sept. 28.
24(2) Plot the density function and the
distribution function. (3) Calculate the
probability that the project will be completed
prior to Sept. 8.
25?????? 1 density function
?????? 2 distribution function
26?????? (1) ????????????????????????????????????
??????????????????????????????????????????????????
??????? ????????????????????????????
??????????????????????? ?????? ?????????? X
???????????????????????
27 ?????????? X ?????????????????? a 1 ??? b 30
??????????????? ??????????????? (1) ??? (2) ?????
28(2) ?????? 1 ??????????? p.d.f ????????????? X
?????????? 2 ??????????? c.m.f ????????????? X
(3)
29 ????????? 4.2 1. ???????? X ?????????????????????
?? (???????????????) ?????? -1, 1 ???? (1)
EX (2) V(X) (3) ?????? x ????????
P(-xltXltx) 0.90 (4) P(Xlt2.5)
304.3 ????????????????????????????? (Normal
Prob. Distribution)
????? ??????? X ?????????????????
??????????????????????????????????????? -?lt?lt?
??? ? gt 0 ??? p.d.f ??? X ?????????
31??????????????????????????????????????????
E(X) ? ??? V(X) ?2
32????????? ?????????? X ??????????????????????????
??????? ? , ?2 ??????????????????????????????
X N(?, ?2 )
33Some useful results concerning a normal
distribution are summarized in Fig 1, For any
normal random Variable
34m3s
m-s
m
m-3s
m-2s
m2s
ms
68
95
99.7
?????? 1 ??????????????????? f(x, m, s2) ????? m
??? s ??????????
35fX(x)
s2 1
s2 1
s2 9
?????? 2 ??????????? f(x, m, s2) ?????? m ??? s
????????????????????
36??????????????????????????????????????? X
?????????????????? a ??? b ???????????
37f(x)
a m b
38????????????? ????????????? N(0,1)
??????????????????????????? N(m,s2)
?????????????????
???
Z ???????????????????????????????????????? N(0,1)
???????????????
39(No Transcript)
40(No Transcript)
41Figure 5.6 The normal distribution showing the
probabilities of certain Z scores
42(No Transcript)
43??????????? 3 ????????? Z N(0,1) ??????? ?? P(Z
?1.65)
??????
44(No Transcript)
45(No Transcript)
46???????? 4 ?????????????????????????????????????
???????????????? 5 ?? ?????????? ?????????? 1 ??
?????????????????????????????????????????????????
??????????????????????????????????????????????????
??????????? 3 ??
47?????? ??? X ???????????????????????????(??)
48???????? 5 ??????????????????????????????????????
??? ??????????????? 60 ????? SD ??????? 15 ?????
??????????????????????????????????????????????????
?? 85 - 95 ?????
49??????
??? X ?????????????????????
50(No Transcript)
51????????? 4.3 1 ??????????????????
??????????????? (?) ?(2.14) P(Z ? 2.14) ???
0.9838 (?) P(0? Z ? 0.81) ??? 0.291 (?) P(1.17?
Z) ??? 0.121
52?????????? a ???????? (?) P(-a? Z ? a) 0.668
??? a 0.97 (?) P(a ? Z) 0.016 ??? a
2.41 2. ??? X ?????????????????? ???? (?)
(?)
53 ?. ?.
54?
55??? ?.
?
563 ?????????????????????????? 800 ??
????????????????? H ?????????????????????? mean
66 ???? ??? standard deviation 5 ????
???????????????????????????????
57(1) P(65 ? H ? 70) 0.3674 (2) P(H ? 72)
0.1157 (3) ?????????????????????????????????????
??????? 65 ??? 70 ???? ???????????? 294
?? (4) ????????????????????????????????????
??????????????? 72 ???? ???????????? 92 ?? (5)
?????????????????????????? 3 ???
584.4 ????????????????????????????
?????????????????
(i) ????????? X B(n,p) ??? n ???????? p
????????? ??????????? B(n,p) ? P( m
) ?????? m np
59(ii) ????????? X B(n,p) ??? n ????????
??? ?????????
????????????????????
60???????????? X ???? N(np , npq) ????????????????
?????????????????????????????????
????????????????????? 0.5
????????????????????????????
?????
??????
P(a ltXlt b) P ( a - 0.5 ltXlt b0.5 ) P(a ltXlt b)
P ( a0.5lt Xlt b - 0.5 )
61Probability of the number of heads occuring.
62???????? ???? ?????????????????????
?????????????????????? ??? ????
63????????? 1 ???????????
64????????? 1 ???????????
65????????? 2 ??????????????????????????????????????
?? ???????
???????
66????????? 2
67????????? 3 ???????????????????? ????????????????
0.5 ????????
68????????? 3
69???????? 6 ???????????????? 43
???????????????????????????? 4 ??
?????????????????????? 200 ?? ????????????
???????????????????? ?. ??????????????????? 4
?? ??????? 40 ??? 100 ?? ?.
??????????????????? 4 ????????? 75 ??? 95
??
70??????
(?)
????????
71??????
72????????? 4.4
73??????
(?) ?????????
????????????? normal ????
???????
???????
74(?)
??????????
--------------------------------------------------
--------------------------------------------------
-------
????????????? (?) ??? 0.2622 ??? (?) ??? 0.8348
754.5 ????????????????????? F(x)
??? X ???? Gaussian random variable
????????????????? F(x) ???????????????????????????
?????????????????? x ???????
76????????? ??? ???????????? ?????????????????
??? ???
77Transformation of random variable
???????? ????????????????????????????? ?????????
???????????? ????
mean ????????????? Y ???
78???????? 7 ??? ??????? p.d.f.
??? ??? ???
???????? ????? ???? (?)
(?) ????????????????????????
79?????? (?)
??????????????
???
80???
??????
?????????
81(?) ????????????????????????????
?????????????? ??????? ??????
???????????????????????? ???
82(No Transcript)
83????????? 4.5
841 ??????????????????
????????????????????????????
??? ????????????????????????
???
85??? ???
???????
86(No Transcript)
873 ???????? ??????
????? ? ??? ? ???????????????
884. ????????????????? X ?????????????????
lognormal ????????????? Y ln X ??????????????
normal ?????????
??????? ?????????
894.6 ???????????????????? (Chi- square
distribution)
??????
???????????????
??????????????????????????????????
???????????????? 1
90????????????????
???????????????? ???????????????? n
91??????? 7 ??? ?????????????? ?????
??????????????????????????????????????? ??????????
???? N(0,1) ??????????????????
??????????????????????????????????
92??????? (???????????????? Hines Montgomery
prob. stat. for engineer ????????????? 3
???? 231)
93??????? 8 ??????????????? X ????????????????????
????????????????????????????? 7 ???
?????????????? Chi-square ????? ????????????????
n ?????????????????????
94Figure 11.1 Chi square distribution for four
different degrees of freedom.Adapted with
permission from Cornell (1956,p.198)
95????????????????? ??? 1. ???????? f(x,n)
???????????? (0,?) 2. ???????????????????????
?????????????????????? 3. ?????????????????????
???????????????????
96???????????????????????????????????????????????
??????????????????? ??????????????????????????????
?????????? 7 ???????????????????????????????????
??????????? 6 ?????????????????????????????????
97(No Transcript)
98(No Transcript)
99???????????????????? Chi-square ????????? ?????
??????????????? ??????????????????????????
100??????????? 9 ??? X ?????????????????????????????
?? ?????????? a ??? b ???????? (?) P (X
gt b) 0.075 (?) P (a lt X lt b)
0.90
101??????
102(No Transcript)
103??????? ????? b 29.91 ????????
(?) ??????????????? a ??? b ????????
104(No Transcript)
105????? b 29.91 ?????? (?) ??????? P(9.591 lt X
lt 29.91) .975 - .075
.90
106????????????? ?????????????????????
107- ????????? 4.6
- ????????????? X ??????????????????????
- ????????????????????? r5 ????
- ?) P(1.145 lt X lt 12.83) (??? 0.925)
- ?) P(X gt 15.09) (??? 0.01)
- 2. ??? ?????????? a ??? b ????????
- P(a lt X lt b)0.95 (??? a1.69, b16.01)
-
-
1084.7 ????????????????????????? t (t
Probability Distribution)
??????? ??? ??? ?????? Z ??? V
???????????????????????????????????? ??????????
109???????????????? t ????????? (degree of freedom)
??????? n ?????????????????????????????????
110???????????????????????????????????? ?????? ???
???????????????????????????????????
????????????????????????????? mean ???
standard deviation ????????
???
111??????????????????
?????????????? t
????????????????????????????? n - 1
112?????? 6.14 ????????????????????????
113???????????????????????? T 1) E(T) 0 2)
V(T) gt 1 3) V(T) 1 ?????? n ?
4) ?????????? T ?????????????????????????
????????????? ????? n ?????????? ????? ?????
???????????????? n ? 30
114??????????? 10 ??????????????????? ???? (?) (?)
???????????? 14
???
?????? ???????????????????????????????????? t
?????????? T ????????? ????????????????
115????????????????????????????
????????????????????? .025 ???????????????????
?? ????????????????? T ???
116.975
t
.025
0
117??????? ???????????????? T
???????????????????????????????????
??????????????????????
118(No Transcript)
1194.8 ????????????????????????? F
???????????????????? 2 ??? ???? m ??? n
?????????? 2 ??????? ???????????????????????
????????????????????????????? ??? ???
????????
120??? S1 ??? S2 ????????????????????????????????
????????
?????????????? F ??????????????
??? ????????
121(No Transcript)
122?????? u m - 1 , v n - 1 ??????? p.d.f ???
???????????????
???????????????????????????????? F
123???????????????????????????????????? F ??????????
F ????????? ?????????????????????????? u ??? v
??????????????????
124???????????? ?
????
125??????????? 11 ?????????? ???
??????
???????? 3.22
126?????????????????? ?????????????????????
???????????????
f.95,6,10
?