q-exponential distribution - PowerPoint PPT Presentation

About This Presentation
Title:

q-exponential distribution

Description:

UNIVERSIDAD NACIONAL DE LA PAMPA Facultad de Ciencias Exactas y Naturales q-exponential distribution in time correlation function of water hydrogen bonds – PowerPoint PPT presentation

Number of Views:56
Avg rating:3.0/5.0
Slides: 22
Provided by: Mar568
Category:

less

Transcript and Presenter's Notes

Title: q-exponential distribution


1
UNIVERSIDAD NACIONAL DE LA PAMPA Facultad de
Ciencias Exactas y Naturales
q-exponential distribution in time correlation
function of water hydrogen bonds Campo, Mario
G., Ferri, Gustavo L., Roston, Graciela
B. Departamento de Física. Facultad de Ciencias
Exactas y Naturales de la UNLPam. Uruguay 151.
Santa Rosa (L.P.) Argentina.
V Workshop de Mecánica Estadística y Teoría de la
Información Mar del Plata Abril 2009
2
Water structure Whats hydrogen bond?
Hydrogen bond (HB)
In water the HB energy 23.3 kJ mol-1 compared
with 492.2148 kJ mol-1 energy in covalent bond.
  • HB in water is 90 electrostatic
  • and 10 covalent.
  • HB restricts the water neighboring.
  • The HB direction is that of the shorter
  • O-H (Odonor Oaceptor )

3
  • Two criteria to define HB
  • Energetic
  • O-O distance?3.5 Å
  • O-O interaction energy gt EHB
  • Geometric
  • O-O distance?3.5 Å
  • O-HO angle gt ?HB

4
Water structure HB distribution
  • Water is connected by a random tetrahedral
    network of HB.
  • HB distribution.

5
Whats the importance of the hydrogen bonds?
  • Anomalous properties of water are influenced by
    the behavior of hydrogen bonding.

residence time
10 fs
20 fs
30 fs
40 fs
Measurements of lifetimes are made depolarized
light scattering techniques
P(t) can be obtained from simulations by building
a histogram of the HB residence times.
C.J. Montrose, et al., J. Chem. Phys. 60, 5025
(1974).
Starr F.W., Nielsen J.K., and Stanley H.E., Phys.
Rev. Lett., 82, 2294-2297, (1999).
6
Behavior of P(t) do not have neither power-law
nor exponential behavior.
Starr F.W., Nielsen J.K., and Stanley H.E., Fast
and slow dynamics of hydrogen bonds in liquid
water, Phys. Rev. Lett., 82, 2294-2297, (1999).
7
Molecular dynamics simulation
GROMACS package. System with 1185 SPC/E water
molecules. 12 independent systems at different
temperatures(213 to 360 K) and 1 atm. Cut-of
radius for the interaction potentials 1.3
nm. Berendsens bath of temperature and
pressure. 2.5 ns for equilibration. 5 ns
aditional simulation ? results. ?t simulation
2 fs. ?t data collection 10 fs.
8
P(t) do not have neither power-law nor
exponential behavior.
T273 K
9
We found that P(t) can be fitting with a
q-exponential function
10
T/K q
?q 360 1.04 0.01 343 1.06 0.01 323 1.05 0.01 313
1.07 0.01 303 1.09 0.01 293 1.09 0.01 283 1.1 0.02
273 1.13 0.01 263 1.15 0.01 253 1.18 0.02 233 1.2
2 0.02 213 1.27 0.02
q(T) behavior
  • q increase with the decrease of T.
  • Above 300 K, P(t) decays exponentially with T
    (q1)
  • qT-1 (Tlt300 K)

300K
11
Changes in the hydrogen bond structure with
temperature
270 K
300 K
12
reciprocal relation between HBs and T (similar to
q(T) at Tgt300 K).
When T decrease, at 300 K 4 HB percentages
exceeds that 2 HB
structural transition of 4 HB -tetrahedral
structure to 3 HB -2 HB structure
13
300 K
14
below 300 K there are a linear correlation
between the tretrahedral structure of water and
q.
300 K
15
Cage effect
mean square displacement (MSD)
  • Cage effect occurs
  • in SPC/E model
  • simulations
  • (Chaterjee et al.,
  • J. Chem. Phys. 128, 124511
  • (2008).
  • Cage effect increase with
  • the decrease of T

Subdiffusive behavior ? cage effect
qGaussian distribution of the displacement of
particles correlated with anomalous diffusion.
Liu and Goree, Phys. Rev. Lett. 100, 055003
(2008)
16
MSD in our MD simulations
17
The non-Gaussian behavior of the displacement of
water molecules was studied calculating the time
t, the time at which the non-Gaussian parameter
a2(t) reaches a maximum. The non-Gaussian
parameter is Where r 4(t) and r 2(t) are the
fourth and second moments of the displacement
distribution, respectively. a2(t) is known to be
zero for a Gaussian distribution M.G. Mazza et
al. Phys. Rev. E 76, 031203 (2007).
18
  • t is correlated with f (4) for values
    corresponding to the systems below 300K. It is
    observed that f(4) (t)-1/4.
  • The increase of q is also correlated with the
    increase of the non-Gaussian behavior of water
    displacement.

19
CONCLUSION
  • The temporal correlation function of hydrogen
    bonds P(t), has a q-exponential
  • behavior.
  • q have values above 1, below a characteristic
    temperature.
  • The increase of q is associated with the increase
    of the probability of two molecules
  • remain bonded during a longer time t.
  • The temperature (300 K), at which the transition
    of q 1 to q gt 1 occurs ,
  • coincides with that at which the tetrahedral
    structure of water and the cage effect in
  • the MSD begins to prevail.

20
References
Angell C.A., Water A Comprehensive Treatise,
Plenum Press, New York, (1981). Angell C.A. and
Rodgers V., Near infrared spectra y the
disrupted network model of normal y supercooled
water, J. Chem. Phys., 80, 6245-6252,
(1984). Berendsen H.J.C., Grigera J.R., Straatsma
T.P., The missing term in effective pair
potentials, J. Phys.Chem., 91, 6269-6271,
(1987). Berendsen H., Postma J., van Gusteren W.,
Di Nola A. and Haak J., Molecular dynamics with
coupling to an external bath, J. Chem. Phys.,
81, 3684-3690, (1984). Berendsen H.J.C., van der
Spoel D. and Drunen R.V., GROMACS a message
passing parallel molecular dynamics
implementation, Comp. Phys. Comm., 91, 43-56,
(1995). Cruzan J.D., Braly L.B., Liu K., Brown
M.G., Loeser J.G., and Saykally R.J.,
Quantifying Hydrogen Bond Cooperativity in
Water VRT Spectroscopy of the Water Tetramer,
Science, 271, 59-62, (1996). Debenedetti P.G.,
Metastable Liquids, Princeton University Press,
Princeton, (1996). Eisenberg D. and Kauzmann W.,
The Structure y Properties of Water, Oxford
University Press, New York, (1969). Mallamace F.,
Broccio M., Corsaro C., Faraone A., Wandrlingh
U., Liu L., Mou C., and Chen S.H., The
fragile-to-strong dynamics crossover transition
in confined water nuclear magnetic resonance
results, J. Chem. Phys., 124, 124-127,
(2006). Mishima O. and Stanley H.E., The
Relationship between Liquid, Supercooled and
Glassy Water, Nature, 396, 329-335,
(1998). Montrose C.J., Búcaro J.A.,
Marshall-Coakley J. and Litovitz T.A.,
Depolarized Rayleigh scattering y hydrogen
bonding in liquid water, J. Chem. Phys., 60,
5025-5029, (1974). Luzar A. and Chandler D.,
Hydrogen bond kinetics in liquid water, Nature,
379, 55-57, (1996a). Luzar A. and Chandler D.,
Effect of Environment on Hydrogen Bond
Dynamicsin Liquid Water, Phys. Rev. Lett., 76,
928-931, (1996b). Sciortino F. and Fornili S.L.,
Hydrogen bond cooperativity in simulated water
Time dependence analysis of pair interactions,
J. Chem. Phys., 90, 2786-2792, (1989). Stillinger
F.H., Theory y molecular models for water, Adv.
Chem. Phys., 31, 1-102, (1975). Starr F.W.,
Nielsen J.K., and Stanley H.E., Fast and slow
dynamics of hydrogen bonds in liquid water,
Phys. Rev. Lett., 82, 2294-2297, (1999). Starr
F.W., Nielsen J.K. and Stanley H.E.,
Hydrogen-bond dynamics for the extended simple
point-charge model of water, Phys. Rev. E., 62,
579-587, (2000). Sutmann G., and Vallauri, R.,
Dynamics of the hydrogen bond network in liquid
water, Journal of Molecular Liquids, 9899,
213224, (2002). Tsallis C., Possible
generalization of Boltzmann-Gibbs statistic,
Journal of Statistical Physics, 52, 479-487,
(1988). Walpole R. and Myers R., Probabilidad y
Estadística, 4ª Ed. McGraw Hill, México,
(1992). Woutersen S., Emmerichs U. and Bakker H.,
Femtosecond Mid-Infrared Pump-Probe Spectroscopy
of Liquid Water Evidence for a Two-Component
Structure, Science, 278, 658, (1997).
21
Thank you !
q-exponential distribution in time correlation
function of water hydrogen bonds Campo, Mario G.
, Ferri, Gustavo L., Roston Graciela
B. Departamento de Física. Facultad de Ciencias
Exactas y Naturales de la UNLPam. Uruguay 151.
Santa Rosa (L.P.) Argentina.
Write a Comment
User Comments (0)
About PowerShow.com