Biomass Dynamics Models - PowerPoint PPT Presentation

1 / 16
About This Presentation
Title:

Biomass Dynamics Models

Description:

Goals: Identify Classic Models. Schaefer. Pella-Tomlinson ... Pella and Tomlinson. m = 2 Schaefer. m 2 skewed left. m 2 skewed right. Biomass. Surplus ... – PowerPoint PPT presentation

Number of Views:346
Avg rating:1.0/5.0
Slides: 17
Provided by: gatew283
Category:

less

Transcript and Presenter's Notes

Title: Biomass Dynamics Models


1
Biomass Dynamics Models
Goals
  • Identify Classic Models
  • Schaefer
  • Pella-Tomlinson
  • Parameter Estimation
  • Regression Methods
  • Difference Equations
  • Problems
  • Perturbation Histories
  • parameter dependence
  • Assessing goodness of fit
  • bias robustness

2
Overview
  • A.K.A. Surplus Production Models
  • simple (3 or 4 parameters)
  • no age structure
  • no time lag
  • no immigration/emmigration
  • Useful when
  • age structure is unavailable
  • age related parameters are poorly known

3
The Basic Concept
Bt1 Bt Rt Gt - Mt - Ct
B stock size R recruitment G growth M
natural mortality C catch (fishing mortality)
production R G surplus R G - M Bt1
Bt surplus - Ct surplus Bt1 - Bt Ct
4
  • peaks at intermediate biomass
  • use actual stock size if available
  • commonly, only index of abundance available

5
Schaefer
dB/dt rB(1 - B/K) -C C qEB
r intrinsic rate of population growth K
carrying capacity B biomass E effort q
catchability
  • Variables C, E, B
  • Parameters r, k, q
  • surplus maximum at K/2
  • MSY rK/4, EMSY r/2q

6
Pella and Tomlinson
dB/dt rB - rBm/K -C C qEB
  • Parameters r, k, q, and m (shape)
  • MSY peak is moved by m

7
Difference Equation Forms
  • similar properties at low r values
  • potential chaotic behavior at large r values

8
Parameter Estimation
I. Equilibrium Methods
  • assume dynamics always at equilibrium
  • Catch and Surplus at equilibrium
  • dB/dt surplus - catch 0

dB/dt 0 rB(1 - B/K) -qEB
  • have historical B index, E
  • estimate r, k, q, MSY, etc.
  • tends to overestimate production Why?

JUST SAY NO!
9
II. Regression Methods
  • based upon assumed disequilibrium
  • rearrangement of Schaefer model into
    regression form
  • Walters Hilborn 1976, Schnute 1977

Bt1 Bt rBt(1-Bt/K) - q BtEt Bt Ut/q
where Ut C/E Ut1/Ut - 1 r - Ut r/kq - qEt
Yt b0 b1 Ut b2 Et
10
III. Time Series Fitting
  • Variables C, E, U (C/E)
  • Parameters r, k, q and B0
  • Fit parameters according to (observed -
    predicted) time series
  • U or C can be used
  • choice of fitting criteria
  • explicit error
  • numerical methods required
  • C.I. possible by computer intensive methods
  • Note at least one more another parameter is
    estimated (error)

11
Perturbation Histories
Yt Ut1/Ut - 1
low CPUElow effort
Ut
high CPUElow effort
Et
low CPUEhigh effort
  • different possible histories
  • initial high U, low E (over exploitation)
  • recoveries (low E, U initially)
  • need CONTRAST to estimate regression
    parameters
  • odd error assumptions and C.I. s for biomass
    dynamics models

12
PerturbationHistories
Ut1/Ut - 1
Ut
Et
  • The one way trip
  • exploited to low abundance
  • unknown starting point
  • little information for management
  • Up and Down the Isocline
  • increased, then decreased E
  • gradual changes
  • CPUE correlated with E
  • best case, MSY estimated
  • cannot distinguish between
  • large, low productive
  • small, highly productive
  • NEED CONTRAST

13
  • Estimate r
  • low U and low E
  • Estimate kq
  • high U and low E
  • Estimate q
  • high E

Ideal Data Rare
MSY rk/4 r/qkq1/4
14
Examining Perturbation HistoriesBy Monte Carlo
Simulation
  • Do not know true values in real data
  • create a model system
  • study the performance of estimators
  • controlled numerical conditions
  • Generate data from Schaefer Model
  • set parameters
  • Estimate parameters from new data
  • use regression method

r k q MSY True .40 1,000 0.010
100 one way trip .13 290,000 0.003 9245 up
down .39 38,000 0.009 3705 Contrast .47
1,142 0.013 134
15
Assessing Goodness of Fit
  • R2 of model
  • predicted vs observed
  • misleading, high R2 in equilibrium fits!!!
  • You should always consider fit relative to
    ALTERNATIVE models
  • Also consider parameter bias in the evaluation of
    model performance
  • estimators from regression models known to behave
    poorly
  • examine via Monte Carlo

16
Auxiliary Information
Write a Comment
User Comments (0)
About PowerShow.com