Stochastic Network Interdiction - PowerPoint PPT Presentation

About This Presentation
Title:

Stochastic Network Interdiction

Description:

Confidence Interval. 11/7/09. 17. Sample Average Approximation(cont.) The (1- )-confidence interval for lower bound. Where P(N(0,1) z )=1- 11/7/09. 18 ... – PowerPoint PPT presentation

Number of Views:112
Avg rating:3.0/5.0
Slides: 29
Provided by: TIG493
Category:

less

Transcript and Presenter's Notes

Title: Stochastic Network Interdiction


1
Stochastic Network Interdiction
  • Udom Janjarassuk

2
Outline
  • Introduction
  • Model Formulation
  • Dual of the maximum flow problem
  • Linearize the nonlinear expression
  • Sample Average Approximation
  • Decomposition Approach
  • Computational Results
  • Further Work

3
Introduction
  • Network Interdiction Problem

4
Introduction (cont.)
  • Stochastic Network Interdiction Problem (SNIP)
  • Uncertain successful interdiction
  • Uncertain arc capacities
  • Goal minimize the expected maximum flow
  • This is a two-stages stochastic integer program
  • Stage 1 decide which arcs to be interdicted
  • Stage 2 maximize the expected network flow
  • Applications
  • Interdiction of terrorist network
  • Illegal drugs
  • Military

5
Formulation
  • Directed graph G(N,A)
  • Source node r?N, Sink node t?N
  • S Set of finite number of scenarios
  • ps Probability of each scenario
  • K budget
  • hij cost of interdicting arc (i,j) ?A

6
Formulation (cont.)
where fs(x) is the maximum flow from r to t in
scenario s
7
Formulation (cont.)
  • uij Capacity of arc (i,j) ? A
  • A A ? r,t
  • ?ijs
  • yijs flow on arc (i,j) in scenario s

8
Formulation (cont.)
Maximum flow problem for scenario s
9
Formulation (cont.)
The dual of the maximum flow problem for scenario
s is
Strong Duality, we have
10
Formulation (cont.)
11
Formulation (cont.)
12
Linearize the nonlinear expression
  • Linearize xij?ijs
  • Let zijs xij?ijs
  • xij 0 ? zijs 0
  • xij 1 ? zijs ?ijs
  • Then we have
  • zijs Mxij lt 0
  • ?ijs zijs lt 0
  • ?ijs zijs Mxij lt M
  • where M is an upper bound for ?ijs , here M 1

13
Formulation (cont.)
14
Formulation (cont.)
15
Sample Average Approximation
  • Why?
  • Impossible to formulate as deterministic
    equivalent with all scenarios
  • Total number of scenarios 2m, m of
    interdictable arcs
  • Sample Average Approximations
  • Generate N samples
  • Approximate f(x) by

16
Sample Average Approximation(cont.)
  • Lower bound on f(x)v
  • Confidence Interval

17
Sample Average Approximation(cont.)
  • The (1-?)-confidence interval for lower bound

Where P(N(0,1) ? z?)1- ?
18
Sample Average Approximation(cont.)
  • Upper bound on f(x)
  • Estimate of an upper bound (For a fixed x)
  • Generate T independent batches of samples of size
    N
  • Approximate by

19
Sample Average Approximation(cont.)
  • Confidence Interval
  • The (1-?)-confidence interval for upper bound

Where P(N(0,1) ? z?)1- ?
20
Decomposition Approach
  • Recall our problem in two-stages stochastic form

21
Decomposition Approach (cont.)
and
22
Decomposition Approach (cont.)
  • E?Q(x, ?s) is piecewise linear, and convex
  • The problem has complete recourse feasible set
    of the second-stage problem is nonempty
  • The solution set is nonempty
  • Integer variables only in first stage
  • Therefore, the problem can be solve by
    decomposition approach (L-Shaped method)

23
Computational results
SNIP 4x9 example
Note 1. Only arcs with capacity in ( ) are
interdictable 2. The successful of
interdiction 75 3. Total budget K
6
24
Computational results (cont.)
Note Optimal objective value in
Cormican,Morton,Wood10.9 with error 1
25
Computational results (cont.)
SNIP 7x5 example
26
Computational results (cont.)
Note Optimal objective value in
Cormican,Morton,Wood80.4 with error 1
27
Further work
  • Solving bigger instance on computer grid
  • Using Decomposition Approach

28
Thank you
Write a Comment
User Comments (0)
About PowerShow.com