CSE 780: Design and Analysis of Algorithms - PowerPoint PPT Presentation

1 / 20
About This Presentation
Title:

CSE 780: Design and Analysis of Algorithms

Description:

What types of operations are allowed. E.g: partial sum. Both ... Return both rank(1) and rank(n) Better than 2n-2? Yes. Return the median. CSE 780 Algorithms ... – PowerPoint PPT presentation

Number of Views:86
Avg rating:3.0/5.0
Slides: 21
Provided by: tri5133
Category:

less

Transcript and Presenter's Notes

Title: CSE 780: Design and Analysis of Algorithms


1
CSE 780 Design and Analysis of Algorithms
  • Lecture 5
  • Lower bound
  • comparison model
  • decision tree
  • Order statistics
  • randomized alg.

2
Lower Bound for Sorting
  • Model
  • What types of operations are allowed
  • E.g partial sum
  • Both addition and subtraction
  • Addition-only model
  • For sorting
  • Comparison-based model

3
Decision Tree
4
A Non-Comparison-Based Model?
  • Can we have such a model at all ?
  • Eg
  • Given n integers in range 1, , m

5
Decision Tree
  • Not necessary same height
  • Worst case complexity
  • Longest root-leaf path
  • Each leaf
  • A possible outcome
  • I.e., a permutation of input
  • Every possible outcome should be some leaf
  • leaves n!

6
Lower Bound
  • Any binary tree of height h has at most 2h
    leaves
  • A binary tree with m leaves is of height at least
    lg m
  • Worst case complexity for any algorithm sorting
    n elements is
  • ?(lg (n!) )
  • ?(n lg n) (by Stirling approximation)

7
Order Statistics
  • Rank
  • The order of an element in the sorted sequence
  • Selection
  • Return the element with certain rank

8
Examples
  • Return rank(1), or rank(n)
  • n-1 operations
  • Return both rank(1) and rank(n)
  • Better than 2n-2?
  • Yes
  • Return the median

9
Select ( r )
  • Return the element with rank r.
  • Straightforward approach
  • Sort, then return Ar
  • Compute a lot of extra information

10
Divide and Conquer Again!
  • Similar to QuickSort
  • Select ( A, 1, n, r )

Case 1 r m
return Am
11
Select (A, 1, n, r )
Case 2 r lt m
return Select ( A, 1, m-1, r )
12
Select (A, 1, n, r )
Case 3 r gt m
return Select ( A, m1, n, r-m )
13
Pseudo-code
Rand-Select ( A, s, t, r ) if ( s t )
return As m Rand-Partition ( A, s, t
) if ( m r) return Am if ( m gt
r ) return Rand-Select ( A, s, m-1, r
) else return Rand-Select ( A,
m1, t , r - m )
Rand-Select(A, 1, n, r) T(n) T( max(m-1,
n-m) ) O(n)
14
Analysis
  • Worst case
  • ? ( n2 )
  • Average case Rand-Select(A, 1, n, r)
  • Indicator random variable
  • X(k) 1 if m k
  • 0 Otherwise
  • E X(k) 1 / n

15
Rand-Select ( A, 1, n, r)
m Rand-Partition ( A, 1, n ) if
( m r) return Am if ( m gt r )
return Rand-Select ( A, 1, m-1, r ) else
return Rand-Select ( A, m1, n, r - m )

T(n) ? X(k) (T( max(k-1, n-k) ) O(n)
16
Solving Recursion
  • T(n) ? X(k) T( max(k-1, n-k) ) O(n)
  • ET(n) E ? X(k) T( max(k-1, n-k) ) O(n)
  • ? EX(k) T( max(k-1, n-k) ) O(n)
  • ? EX(k) ET(max(k-1, n-k) )
    O(n)
  • 1/n ? ET(max(k-1, n-k) ) O(n)

17
Recursion cont.
  • max(k-1, n-k) k-1 if k gt n/2
  • n-k otherwise

Proof by substitution method
18
Finding k Largest Numbers
  • Given A1,..n
  • Return k largest numbers
  • Sorting
  • T(n) O (n lg n k) O(n lg n)
  • Heap
  • T(n) O (n k lg n)
  • Selection
  • T(n) O (n k )

19
Deterministic
  • Selection
  • O(n) deterministic algorithm
  • How about Quicksort?

20
Summary
  • Sorting lower bound
  • Comparison model
  • Decision tree
  • Selection
  • Min/max
  • Any rank -- randomized approach
Write a Comment
User Comments (0)
About PowerShow.com