Title: MachLorentz qE nxB Thrusters
1Mach-Lorentz qE(nxB) Thrusters
Ti4 Generated G/I Kinks
G/I
Tomorrows Momentum Today! (Tom Mahood)
2W-E Theory Summation
ALL the mostly distant subatomic Gravitational /
Inertial (G/I) particles in the universe or Far
Out Active Mass (FOAM)
2
Given GRT Block Universe with TI/QM
1
Wheeler / Feynman / Cramer TI/QM Advanced
Retarded G/I spacetime disturbances that
propagate at the speed of light both forwards
and backwards in time. This effectively makes
these Resonant G/I Momenergy transfers between
the local particle and the FOAM, instantaneous.
3
Local Interactions in our 4D
Spacetime
Woodward Effects Systems Box (The entire
causally connected Spacetime Universe)
Resonant Mass
The summation of the forces generated by the
Advanced Retarded spherical G/I Kinks
becomes the local ions rest mass or inertia.
The magnitude of the timing phase deltas between
the Advanced Retarded G/I Kinks is
proportional to the magnitude of the G/I mass
fluctuations.
4
Superluminal Past Future
3Woodward Effect Mass Fluctuations
Peak Impulse Term Matter Density
w1 Base 2.20Hz G 0.20 r0 Base
1.00 r0 0.90
180o
Peak dr0/dt
Impulse Term
Impulse Exotic
4pGr0
Wormhole Matter Term
Four Peak Exotic Matter Pulses/Cycle
FIGURE 2. Excel W-E Equation Solution Using
Sin-X Driving Function with Y-Axis Delta Mass.
4Woodwards q(EuxB) Mach Lorentz
Thruster-1
Mach-1 Data File, June 2003
The Carrot for us donkey engineers
5Lorentz Force on Charged Particles
Attractive Force F is actually the wires falling
down a force gradient into a spacetime low
pressure zone.
Zone of B-Field Cancellation
F
F
Magnetic B-Field Strength
Flat Spacetime Plane
Spacetime Low Pressure Zones
F
B
B
F
Charge moving with Velocity out of page
V
q
Moving Charge Induced B-field
B
Lorentz Force on Positive Electric Charge
B
Spacetime High Pressure Zone
Perpendicular B-Field
6Radial Ion Velocity x Toroidal Magnetic Field
Yields Lorentz qE(vxB) Force Rectification
Approach
AC B-Field
Barium Titanate Unit Crystal Cell (UCC)
AC E-field
Force Vector (In/Out of page)
8 Ti4 Ionic Current
Ba-ions
BaTiO3 Cylinder
Radial AC E-Field
O-Ions
1X Freq E-Field Voltage Generator
AC E-Field
Toroidal AC B-Field
B-Field Coil Toroidal Windings
Lorentz q E (v x B) Force on ALL ions is at
right angles to the E B-fields and is
proportional to the Ti4 ions instantaneous
Velocity (v) times the Magnetic field intensity
(B).
AC B-Field
1X Frequency B-Field Generator Phase
Control
7HV E-field
BaTi03 Perovskite With applied vxB E
B-fields Per Woodward
Oxygen
B-Field
Titanium
Force
Barium
E-Field
8Titanate Unit Crystal Cell Polarization
(1)
Titanate Unit Cell ABOVE Curie Temperature with
Ti ion at the minimum energy position in the
center of the cubic crystal cell.
Oxygen (O-2) ions 6 places
Ti4 / Zr4 Ion
(2)
Titanate Unit Cell BELOW Curie Temperature with
Ti ion offset from crystal cell center due to
Tetragonally distorted unit crystal cell.
Magnitude of Ti ions displacement below Curie
Temperature is proportional to the titanates
1-kHz Dielectric Constant
Li, Mg, Ti, Ba, or Pb2 ions 8 Places
9Ceramic Dielectric Parts
10(No Transcript)
11Ceramic Dielectric Energetics
1.3A
12BaTiO3 Dielectric Energetics
2 Barium ion (6 pm dia.)
Ti Energy Wells
-2 Oxygen ion (3 pm dia.)
4 Titanium ion (1.1 pm dia.)
Magnitude of offset separation is proportional
to the dielectric constant after spontaneous
polarization below the Curie temp.
13qE(vxB) Forces Applied to Ti4in BaTiO3 UCC
2D-Potential Wells
Barium Titanate (BaTiO3) Unit Crystal Cell (UCC)
and its Energy Well Dynamics
UCC Restoring Forces
BaTiO3 Unit Crystal Cell (C-Axis)
AC B-field
Ba-ions
AC E-field
E-field
vxB Force
M0-Dm
M0-Dm
B-field
Energy Well Differentials
O-Ions
Ti4
vxB Force
Ti4 Ionic Current
M0Dm
14Ceramic Dielectric Parts
Silver Electrodes
Oxygen Depletion Zone
B-field
E-field
15W-Es vxB Force Rectification
-90 Degrees
The UCC Lattice restoring force is maximum when
vxB is zero. The E-field pushes ions left to
right in lattice, while lattice pushes back
during each cycle. It is the up and down motion
that is the push heavy, pull light force
summations.
Per the inset to the left, the E-field drives the
ion along the x-axis, the vxB product will drive
in the y direction, while the titanate UCC
lattice restoring forces will drive in the y
direction. The B-field is in- to or out of the
page.
16W-E vxB Modulation verses Delta-Mass
1.0-Cycle
Applied 1-w B-field Applied 1-w E-field
180o
180o
Max Thrust
-90o
90o
Max Velocity Ion Mass
D kgt
50.0 Dr Case
time
-D kgt
Min Velocity Ion Mass
UCC Restoring Forces
(D-mass time) (-D-mass time) per cycle
17W-E vxB Modulation (1-wB - Max Out (-Z))
UCC Restoring Forces (- Push) in -Y-Axis during
all times
Fnet (mmaxa)-(mmina) n x B Force /
Z-Axis
Ti Ion Displacement
Ti Ions Min. Mass
Y-Axis
UCC R.F. / Y-Axis
180o
B-field / X-Axis
B-field Push North
B-Field 90o Phase relative to E-field
E-field / Y-Axis
UCC R.F.
Ti Ion Velocity n Vector / Y-Axis
-Z-Axis
Max Velocity Line at Center of UCC
Time X-Axis
Z-Axis
Y
E-Field
B-field -Push South
-Z
Z
90o
180o
Max Energy Storage
-Y
F mmina
Time 1
Ti Ions Max. Mass
View Looking at Vectors Down X-Axis at T1
F mmaxa
UCC-R.F. (Push) Y-Axis
18W-E vxB Modulation (1-wB - NO Output)
UCC Restoring Forces (- Push) in -Y-Axis during
all times
Fnet (mmaxa)-(mmina) n x B Force /
Z-Axis
Ti Ion Displacement
Ti Ions Min. Mass
Y-Axis
UCC R.F. / Y-Axis
180o
B-field / X-Axis
B-field Push North
B-Field 0o Phase relative to E-field
E-field / Y-Axis
UCC R.F.
Ti Ion Velocity n Vector / Y-Axis
-Z-Axis
Max Velocity Line at Center of UCC
Time X-Axis
Z-Axis
Y
E-Field
B-field -Push South
-Z
Z
180o
Max Energy Storage
-Y
F mmina
Time 1
Ti Ions Max. Mass
View Looking at Vectors Down X-Axis at T1
F mmaxa
UCC-R.F. (Push) Y-Axis
19W-E vxB Modulation (1-wB - Max Out (Z))
UCC Restoring Forces (- Push) in -Y-Axis during
all times
Fnet (mmaxa)-(mmina) n x B Force /
Z-Axis
Ti Ion Displacement
Ti Ions Min. Mass
Y-Axis
UCC R.F. / Y-Axis
180o
B-field / X-Axis
B-field Push North
B-Field -90o Phase relative to E-field
E-field / Y-Axis
Ti Ion Velocity n Vector / Y-Axis
UCC R.F.
-Z-Axis
Max Velocity Line at Center of UCC
Time X-Axis
Y
Z-Axis
B-field -Push South
E-Field
-90o
-Z
Z
180o
Max Energy Storage
-Y
F mmina
Time 1
Ti Ions Max. Mass
View Looking at Vectors Down X-Axis at T1
F mmaxa
UCC-R.F. (Push) Y-Axis
20Woodwards 2003 Mach-3A 50kHz Test Article
Mach-3A was operated in an open-ended,
non-resonant mode. Doorknob Cap E ½ CV2 ½
(11x10-9 1,200Vp2) 0.00792 Joules into 4.379
cm3 x 2 0.0009043 J/cm3 Or 0.00792J / 47.8gr
Active Mass 1.657x10-4 J/gr
Two Wire (GRN BRN) Bifilar Bundle 1 with five,
60-turn Bifilar layers totaling 300 turns per
toroid side, while maintaining the magnetic
field additive coil winding sense for each
layer.
230 uh
0.75 Amps / wire
Trimmed Cap Active Mass 5.5/6.05 x 26.28 gr
23.9 grams each Density 6.01 gr / cm3
1.65cm
Bifilar Bundle 1
3-to-4-amps
460 uh
230 uh
Caps Er 9,000 Qty. 2, trimmed Caps 5.5 nF _at_
15kVdc Ceramic Caps in Parallel 11.0 nF _at_
15kVdc 2.705cm OD x 0.762cm Thick, 6.05nF, Active
Mass 26.3g, Total Mass30.8g each
Bifilar Bundle 2
21Woodwards Mach-3A qE(uxB) Results
-15
270o-90o results
22Woodwards Mach-5A 69kHz vxB Thruster
325 Turn, 22 AWG Green Magnet Wire Inductor
Coils on T200-26 Iron Powder Core, Qty. - 2
vxB Test Article in Vacuum Chamber at 30
Microns Date September 04, 2004
23Mach-5A vxB MLT Test Article Wire Feeds
Power feed Wires
Coils
Faraday Shield
Caps
24Mach 5A 09-22-2004 Preliminary Results
File Name Voltage Power
Thrust Ratio
Prediction ______________(Peak)_______(VA)_______(
270o-90o)____________________ High
1,100 1,025
90-95 1.33 90 Medium
1,000 920
65-70 1.00 68 Med-low
900 760
50 0.73 50 Low
850 715
none 0.61
40 Zero (180-0) 1,100 1,030
none n/a
none
25Woodwards Mach-5A 09-14-2004 69kHz, vxB Results
with 1kW into E B Circuits
10 milligram-f Per division
10 milligram-f Per division
100 VARs Per division
100 VARs Per division
260 mgr-f Turn-off Transient
Cap Inductor Power ON
Inductor Power
Inductor Power
Capacitors Power
Capacitors Power
Thrust
Thrust
60 milligram-force Peak Seismic Noise Platform
Null Thrust Measured
100 milligram-force 270-90 degree Data gt 50
mgr-f Thrust
290 mgr-f Turn-On Transient
X-Axis 1.0 Second per division
X-Axis 1.0 Second per division
270-90 Degree Data Runs, Average of 35
Runs Operating Conditions 1,100 V-peak, 1.0 A-p
in inductors or ½ amp per coil. Caps2.5nF,
15kV, Z5U Coils-325T, 22AWG 1.60 millihenries
each and 910 mh in parallel.
180-0 Degree Data Runs, Average of 28
Runs Operating Conditions 1,100 V-peak, 1.0 A-p
in inductors or ½ amp per coil. Caps 2.5nF,
15kV, Z5U Coils 325T, 22AWG 1.60 millihenries
each and 910 mh in parallel.
26Marchs 2004 W-E vxB Test Lab
27Single Source1.8-to-10 MHz HF vxB Test Rig
115 Vac ac Power
13.8 Vdc
APC-1000 UPS
Intel P3 800 MHz PC Windows-98 With PCI-DAS6036 An
alog I/O Card With SoftWIRE
Texmate DI-60E 6-Digit Meter
Controller 999.992g (0.002g res)
PC-420 Dual Channel 10W Signal Generator (10
MHz) Plus (2) QAMP-40
Ameritron AL-80B 100W-to-800W E-Field Amplifier
HLA-150 10W-to-100W Linear Amp
SA2060A Antenna Tuner
RS-232 I/O
1
ISA Data Power Bus
2
Cap Temps
550V-peak
IEEE-488/ParaPort
Cap Temp, Mag Current/Field
Pearson-110
3X Step-Up Xfmr
nxB Test Article Mass 450 grams
Tektronix TDS220 8-Bit/100MHz Oscilloscope
Cap-V
Synch
AM Mod
Plexiglas Platform Aluminum Stand-off Rod
L-Cur.
WAVETEK Model 802 0-to-50 MHz Pulse Generator
7Hz 0-to-10V 455g-to-465g
Faraday B-field MuMetal Shields
PicoTech ADC-212/3 12-Bit/1.5MHz Oscilloscope
0.032 Over Range Stop W/ 0.005 PolyCarb. Film
Layer
Cap Temp.
SCAIME AG-1kg Load Cell 0-to-0.020 V 0-to-1,000
grams
0.625 Thick Al Plate
NOTES 1. 800W RF Amplifiers can deliver up to
200V rms into a 50 Ohm load.
2 Thick Lead Bricks, 30lbs, Qty-2
0.500 Thick Al Plate
Sorbothane Vibration Isolation Pads
28W-E HF vxBs AG-1kg Load Cell with Fiberglass
Tube/Nylon Rod Standoff
MuMetal Faraday Shield
Wheatstone Bridge
AG-1kG Load Cell
Load Cell Bumper
29MLT-2004 HF vxB Test Set-Up
E-field 3X Step-Up Transformer Box
Z
/Z Thrust Axis
Fiber Glass Tube Nylon Rod MLT Stand-off
Vacuum Chamber vxB Capacitor Inductor Terminals,
/-, /- Connection shown
1kg Load Cell in Faraday Shield
Z
_
_
30Vacuum Chamber Power Feeds
L-C Wired in /-, /- Configuration
Caps
Inductors
31Marchs MLT-2004 vxB Test Article Core
10 Fiberglass Tape Spacers, 8-turns, Qty. 8
Exciter / Calibration Coil, 16 Turns 28
Thermaleze Magnet Wire / -1 Core Segment
20 Beldsol Magnet Wire Capacitor Power Feed
Wires with TFE Sleeves Qty. 4
1,000 pF _at_ 10kV Caps Vishay/Cera-Mite P/N
100GAD10, Y5R Ceramic Capacitors er
2,500 0.750OD x 0.320 thick Qty. 8, in 2
series strings of 4 ea. with 10 Meg-Ohm, 1/2W
voltage equalizing resistors in parallel with
each resistor.
FR4 Fiberglass Proto-Board, 0.063 thick, 0.10
hole Spacing
T200-1 (0.5-to-5 MHz) Magnetic Core Segments with
m 20 Qty. 8
Magnetic Sensor Coil 19 turns 28
Thermaleze Magnet Wire / -1 Core Segment
32Vishay Cera-Mite GA Series HV Disc Ceramic
Capacitor Operating Limits
33Vishay/Cera-Mite Capacitor Charts
Similar to my Y5R Dielectric With Er2,500
30C-to-85C, /-15
Er 2,500
Er 5,000
Similar to Woodwards Z5U like Doorknob Cap
Dielectric with Er7,500 30C-to-86C But with
20 to 80
Er 7,500
34MLT-2004 vxB Test Article 4 OD
1,000 pF _at_10kV dc Caps 10-Meg, 1/2W C.F.
Resistors
18 AWG Formaleze Magnet Wire 180C, 74 turns per
side, first layer
T200-1 Core Segments
Fiber-Glass Tape First layer
2
1
3
4-Cap Series leads
18 AWG 660/46 Litz Wire with Polyester/Nylon 64
turns per side, 2nd layer
Fiber-Glass Tape, 2nd Layer
As tested Weight 463.94 grams
-
50 uH
Both Mag Layers wired as shown then in parallel
4
5
35MLT-2004 Inner Magnetic Winding
18 AWG Formaleze Magnet Wire 180C, 74 turns per
side, first layer
36A
B-field Plot A-A
7.64 Gauss
Coil 148 Turns Current 1.0 Amps Core
Segments 8, T200-1 Segments
8.51 Gauss
MLT-2004 8-Cap VxB Test Article with
T200-1 Cores (m20)
9.38 Gauss
A
37W-E MLT-2004 Delta-Mass
Operating Conditions freq. 2.2 MHz r0 5,628
kg/m3 max d-mass density /-1,970 kg/m3
B-field Pushes heavy
Net Delta Mass 1.05 x 1014 _ -4.97 x
1013 1.547 x 1014
Net Delta Mass
180o
/-d-mass
UCC Restoring Forces Push back light
3825.0
Gauss
Capacitors Peak Amps
1.0
2.5Ap
Per Capacitor Peak Voltage
67Vp 8 535Vp Data Point 0.32 g-f Delta
375-to-1
0.1Ap
0.0008 gr-f
Derived Predicted vxB Force Output (gram-force)
MLT-2004 vxB Test Article w/ Eight, 1,000pF,
10kV, Y5R caps in series driving dual 148 Turn
Coils with Eight, T-200-1 Core Segments. Peak
B-field in Caps 8.5 gauss / Amp-peak Operating
Freq 2.2 MHz (Andrews vxB Spreadsheet)
39Series Resonant Waveforms
V-p
V-p
Fres.1.802 MHz
Cap C 0.156 nF L 50 mH Freq. 2.20
MHz
Pearson 110
Tank Q 3
I-p
I-p
IL-C
IL-C
-
-
-
-
L
L
Series /-, -/
Vcap
Vcap
Series /-, /-
90 Degrees
V-p
I-p
I-p
V-p
V-p 500 V-p I-p 0.82 A-p (Cal.)
Vp 535 V-p I-p 0.90 A-p (Cal.)
With 20 Watts rms at 2.20 MHz
40MLT-2004 vxB 02-06-2004 DATA
Weight Scaling 1.43 Volt / gram
T-Delay DI-60E Weight Meter Processing Time
Delay
98oF
Temp.
Weight
85oF
Initial positive () weight change in BOTH the -Z
Green and Z Red weight traces we think is due
to power feed I2R wire sag prompt warm- up
period in the Y5R Dielectric before mass
fluctuations commenced.
464.88g
?Z
LM34H Temperature Trace
0.46g
464.42g
464.15g
Z
Peak to Peak Noise 0.035 gram-force
0.21g
463.94g No Power
0.64g
0.20 sec
T
0.43g
Sag Y5R Warm-Up Time 6.10 sec
Photo Distortion
8.00 sec
463.51g
41Marchs Improved 2005 W-E Lab (-1)
2nd TDS-220 Tek Scope
HLA-300L 300W HF Amp
New Instek 3015 15MHz Signal Generator w/ AM
FM Modulation Capability
42Transmitter Ground Ground Loop Isolation Wiring
75W TRIAX
PC-420 F. Gen. Chan. 1
Instek GFG-3015 Function Gen.
2X Step-Dwn Xfmr
Mach-2MHz or L-C Tank
1
2
3
4
5
6
7
Ameritron AL-80B 100W-to-500W E-Field Amplifier
QAMP-40 1-to-10W Linear Amplifiers Qty. 2
SA2060A Antenna Tuner
HLA-300V 10W-to-150W Linear Amp
MFJ-915 RF Isolator
MFJ-915 RF Isolator
CN-801 PWR/VSWR Meter
MFJ-860 PWR/VSWR Meter
1 (BNC)
MFJ-931 Virtual GND
Single Point Ground
14.0 Vdc
10 Cu Ground Wires
E.G.
120Vac
Ameritron Al-80B 100W-to-500W B-Field Amplifier
HLA-150 10W-to-75W Linear Amp
SA2060A Antenna Tuner
MFJ-915 RF Isolator
MFJ-915 RF Isolator
CN-801 PWR/VSWR Meter
MFJ-860 PWR/VSWR Meter
2 (BNC)
NOTES 1. 1 through 3 are RG-8X Coaxial
Jumpers 2. 6 through 9 are RG-8 Coaxial
Jumpers 3. E.G. is dc Earth Ground via 25 foot 6
Cu Wire to 8, 5/8 OD Grd. Rod 4. Nominal
Transmission Line Impedance 50W
11 Isolation Xfmr., 2ea.
PC-420 F. Gen. Chan. 2
3X Step-Up Xfmr
vxB Inductor
PC GND
43Marchs New Improved W-E Lab
(-2)
2004/2005
Step-Up Xfmr Diff Amp
Load Cell Faraday Shield Conn.
TRIAX Power Cable Cap Voltage Coax
144.6 gram vxB Mach-1 MHz in MINWAX Can
Phase Reversal Relays
44Mach-2MHz vxB Series Resonant Current Reversal
Schematic
I-ind V-cap Channels 1 2 RG-58 to 1-Meg W Scope
(2.0 MHz)
Pico ADF25A 1/10 Diff Amp, 8MW / 2.75pF
Instek GFG-3015 Function Gen.
E B-fields 1X Isolation Transformer Balanced
Output
1
1-to-15 MHz Linear Amps
Ant. Tuner
S W R
Tek P5200 1/50 Diff Amp, 8MW / 3.5pF
1/ X 7
RG-58U
Phase Reversal 12Vdc Relay Control
LMC Liquid Metal Contact FB Ferrite
Beads D12 600V, 1-Amp Diodes C3,45
0.001uF_at_250Vac
75W Triaxial Cable
75W Triax
Vacuum Chamber
FB
D1
D2
C3
C4
Secondary Fixed Faraday Shield
Single Point Ground (SPG)
RG-316U
G41C SPDT Vac Relays A-NC B-NO
-
Vcap
T/R SW1
A
A
B
B
Rs
RY1
RY2
LMC-12
LMC-34
Relay Control Logic 1. L/C /-, -/ 1-A, 2-A
2. L/C -/, -/ 1-B, 2-B Rs 0.20W, 60W,
2100pF C1, C2 500pF at 15kVdc L3 10-turn
B-field Coil50W
LMC 5-8
i
RG-316U
i
L3
A
L1 L25 mh
RF Gnd
SPG
B
LMC-9
Res. Freq.2.25 MHz
C1C2 1,000pF/15kVdc
Primary Floating Faraday Shield
0.5uF
Thermistor
45Liquid Metal Banana Jack Pots
46EMI Test Secondary Faraday Shield Wiring
Balanced Inductor Current Taps
100pf, 10kV HF Current Noise Reduction Cap
0.204W
Phase Reversal Solenoid Coil Wiring
Not used
Triax RF-In
Cap Voltage
Temp and B-field Connectors
RG-316/U 50W Coaxial Cable (Single ended Cap
Voltage Tap)
47Woodwards 1.00-MHz vxB Test Article
T106-2 Core 1.060 OD 0.570 ID 0.437 Thk
500pF 15kVdc Y5U Caps 2-Places
30-Turn 22 AWG B-field Coil 2-places wired
in series
1.30 (3.302cm)
Given 150GAST50 Cap Slugs 0.400 (1.016cm) OD
by 0.250 (0.635cm) thick Volume p
(1.016/2)2 0.635 0.5148 cm3 Active Mass
0.5148 cm3 5.6gr/cc 2.88 grams er 5,000
Mass 100 grams
48Marchs Mach-2MHz Test Article Mount Faraday
Shield Total Weight 144.6 grams
Bottom of Can
MINWAX
4-40 x 1.00 Long Brass Screws, Nylon Washers
Nuts 9-Places
8 Fl Oz Tin Can 58.4 grams with Lid
0.010 A260 Sheet Brass 0.38 Wide with 0.25
Deep Flanges, Solder all Corners 8.9 gr
Can Lid
1.13
Mach-2MHz T106-2 Core with Qty. 2, 500pF Caps
Qty. 2, 30T Coils (46.8 grams)
0.25
2.00
0.15
6-32 x 1.25 Brass Screw, Nut Lock Washer
1.88
1.00
Plexiglas Dog Bone Clamps, 2-Places
0.825
Epoxy Flange Doubler to Lid
49Bottom of Mach-2MHz Test Article Mount
4-40 1.00L Brass Screw With Nylon Shoulder
3, 0.375 OD Acetyl Flat Washers, 9-Places
50Mach-2MHz Construction Tests
Mach-2MHz Components
Mach-2MHz mounted on 8oz can lid
Mach-2MHz vxB Test Stand
T106-2 Core
Caps
30-turn Coils
500pF
B-field Graph
500pF
5162.8
Gauss
31.4
2.0Ap
6.3
Capacitors Peak Amps
1.0Ap
Per Capacitor Peak Voltage
Cap Voltage Flat-Topping Zone
0.2Ap
Mach-2MHz Data Point 0.060 gr-f at 122Vp
0.045072
0.002817
Derived Predicted vxB Force Output (gr-f)
Mach-2MHz vxB Test Article w/ Dual 500pF, 15kV,
Y5U caps in II driving Dual 30Turn Coils in
parallel with dual T-106-2 Core Segments. Peak
B-field in Caps 35 gauss / Amp-peak Operating
Freq 2.2 MHz (Andrews vxB Spreadsheet NO F.F.)
0.000005
52Feb 03, 2005 Mach-2MHz Data Rev A
Removed 1.00gr mass from Primary Faraday Shield
Test Article
Start Phase Toggling
Stop Phase Toggling
0.13 gr-f 90o/270o
1.00 gr-f
Mach-2MHz Operating conditions Frequency 2.13
MHz Cap Voltage 122.2V-p Total Inductor Current
1.6 Amp-p Air Gap B-field 28 Gauss Performed
four (4) phase reversals In approximately 7
seconds
Thumped Secondary Faraday Shield case to Clear
Liquid metal stiction
532.00 gr at 10.00V
142.00-144.00 gram scaling with /-10V
1.00 gram
1.00 gr at 5.00V
Calibration Weight Pulse
February 15, 2005 Mach-2MHz /-0.13 gram-force
output during 1-to-2 second manual 90/270 degree
phase reversal switching data at 2.0 MHz, 50W,
from HLA-150 with VSWR of 6-to-1 producing
85V-p across the caps and 0.57A-p thru them.
Predicted vxB results at this cap voltage is
0.42 milligram-force.
0.00 gr at 0.00V
54Feb 19, 2005 Mach-2MHz Data
144.4 grams
5 seconds
1.0 gram
143.8 grams
0.22 gram-force
90o/-90o switching
Calibration Weight Pulse
February 19, 2005 - Mach-2MHz vxB MLT Data at
2.13MHz Measured Force Output /-0.22
gram-force over 21.2 seconds during twelve,
1-to-2 second manual 90o/-90o phase reversal
switching cycles at 50W, VSWR 8-to-1 120V-p /
0.75A-p per cap. Predicted Derived vxB results
0.0013 gram-force Predicted Direct vxB
results 0.0050 gram-force
142.6 grams
142.0 grams