60-GHz PA and LNA in 90-nm RF-CMOS - PowerPoint PPT Presentation

About This Presentation
Title:

60-GHz PA and LNA in 90-nm RF-CMOS

Description:

(RMO2C 2) 60-GHz PA and LNA in 90-nm RF-CMOS Terry Yao1, Michael Gordon1, Kenneth Yau1, M.T. Yang2 and Sorin P. Voinigescu1 1University of Toronto – PowerPoint PPT presentation

Number of Views:160
Avg rating:3.0/5.0
Slides: 26
Provided by: Ter447
Category:
Tags: cmos | lna | ghz

less

Transcript and Presenter's Notes

Title: 60-GHz PA and LNA in 90-nm RF-CMOS


1
60-GHz PA and LNA in 90-nm RF-CMOS
(RMO2C 2)
  • Terry Yao1, Michael Gordon1, Kenneth Yau1, M.T.
    Yang2 and Sorin P. Voinigescu1

1University of Toronto 2TSMC
2
Outline
  • Motivation
  • mm-Wave Actives and Passives
  • 60-GHz LNA in 90-nm CMOS
  • 60-GHz PA in 90-nm CMOS
  • Conclusions
  • Acknowledgments

3
Motivation
  • 60-GHz band
  • high atmospheric attenuation
  • 7-GHz of unlicensed spectrum 57-64GHz
  • Applications
  • high data-rate wireless transmission
  • mm-wave sensors
  • Smaller on-chip passives ? higher integration ?
    single-chip transceivers
  • Technology scaling enables low-cost 60-GHz radio
    SoCs in silicon

4
60-GHz System Overview
  • Classical radio architectures simple, robust at
    mm-waves
  • Crucial front-end blocks VCO, LNA, PA

5
mm-Wave Transistor Performance
  • Measured gain of 90-nm n-MOSFETs (8dB) is
    comparable to that of SiGe HBTs (10dB)
  • Cascode exhibits higher gain than CS/CE stages
    benefits of MOS cascode diminish at gt60GHz

6
Key Biasing Ideas for LNAs and PAs
  • Peak fT, fMAX and NFMIN characteristic current
    densities largely unchanged across technology
    nodes and foundries
  • NFMIN (0.15mA/µm) and peak fMAX (0.2mA/µm) are
    close ? LNAs simultaneously optimized for noise
    and high gain
  • In CMOS PAs optimum current swing when biased at
    0.3mA/µm

7
Key Enabler Lumped mm-Wave Inductors and
Transformers
  • Reduced form factor of on-chip passives at
    mm-waves
  • Spiral inductors preferred over CPW or µ-strip
    T-lines
  • Vertically stacked, Xfmr measured up to 94GHz
  • Inductors and Xfmrs modeled using ASITIC gt90
    accuracy

Measured transformer power transfer up to 94GHz
11 vertically stacked transformer in 90-nm CMOS
8
Outline
  • Motivation
  • State-of-the-Art
  • mm-Wave Actives and Passives
  • 60-GHz LNA in 90-nm CMOS
  • 60-GHz PA in 90-nm CMOS
  • Conclusions
  • Acknowledgements

9
mm-Wave LNA Design
  • Cascode offers best isolation, low-to-moderate
    noise, ease of matching, good linearity, high
    gain drawback is higher supply voltage
  • Methodology based on

Voinigescu et al., JSSC (Sept. 97)
10
60-GHz LNA in 90nm CMOS
  • 2-stage cascode biased at 0.2mA/µm (gain,
    linearity and noise)
  • Input/output matched to 50O (accounting for CPAD)
  • No source degeneration in 2nd stage for gain
  • LM1 forms artificial t-line with (Cgs2Csb2) and
    (Cdb1Cgd1)

11
60-GHz LNA Fabrication
  • 90-nm RF-CMOS with 9-metal layers
  • fT/fMAX140/170GHz (Wf2µm)
  • fT/fMAX120/200GHz (Wf1µm)
  • Thick top metals M8 M9
  • Inductors high Q, small area
  • 2pF MIM capacitors for de-coupling
  • Large metal plane and ample substrate contacts
  • 350 x 400 µm2

Active area 180 x 300 µm2
12
60-GHz LNA Measurements
  • Repeatability across dies
  • Peak gain 14.6dB (58GHz)
  • Isolation gt 32dB
  • IIP3 -6.8dBm (58GHz)
  • NF 4.5dB (simulated) (confirmed by cascode
    meas. to 26GHz)

13
LNA Comparison with State-of-the-Art
ITRS
LNA Technology f G NF IIP3 DC Power Area FOM
160/160 GHz fT/fMAX SiGe HBT 1 65GHz 14dB 10.5dB (sim) -6dBm 34mW _at_ 2.5V 0.3 x 0.4 mm2 1.2
200/290 GHz fT/fMAX SiGe HBT 2 61.5GHz 15dB 4.5dB (meas) -8.5dBm 10.8mW _at_ 1.8V 0.6 x 0.9 mm2 13.8
90/130 GHz fT/fMAX 130nm CMOS 3 60GHz 12dB 8.8dB (meas) -0.5dBm 54mW _at_ 1.5V 1.3 x 1.0 mm2 2.1
140/170 GHz fT/fMAX 90nm CMOS 4 58GHz 14.6dB 4.5dB (sim) -6.8dBm 24mW _at_ 1.5V 0.35 x 0.4 mm2 8.1
1 M. Gordon et al., SiRF 06. 2 B. Floyd et
al., ISSCC 04. 3 C. Doan et al., ISSCC
04. 4 This work.
  • First 60-GHz LNA in 90-nm CMOS
  • Higher gain, lower NF, lower power dissipation,
    smaller area than 130nm 60G LNA
  • Design scalable in frequency and ported to STMs
    90nm CMOS technology (60GHz receiver submitted to
    CSICS 2006)

14
Outline
  • Motivation
  • State-of-the-Art
  • mm-Wave Actives and Passives
  • 60-GHz LNA in 90-nm CMOS
  • 60-GHz PA in 90-nm CMOS
  • Conclusions
  • Acknowledgements

15
Key mm-Wave PA Design Ideas
  • Class A for maximum linearity
  • Linear voltage swing decreases with each new node
  • Current swing constant across nodes
  • Measured breakdown gt3V

ITRS
16
60-GHz PA in 90nm CMOS
  • Class A, 3-stage CS topology
  • Input/output match ? 50?
  • Branch currents scaled for optimal linearity

17
60-GHz PA Fabrication
Active area 350µm x 160µm
  • Same 90-nm RF-CMOS process technology as 60-GHz
    LNA
  • Spiral inductors for matching ? high area
    efficiency

18
60-GHz PA Measurements
  • Repeatability across dies
  • Peak gain 5.2dB (60GHz)
  • 3-dB BW gt 13GHz (52-65GHz)
  • S22, S11 both matched (60-65GHz)
  • OP1dB 6.4dBm, Psat 9.3dBm (60GHz)
  • Maximum linearity and gain occur at 0.28mA/µm

19
60-GHz PA Measurements
  • Output compression proportional to supply voltage
  • Maximum efficiency 21.4 maximum PAE 7.4

20
60-GHz PA Performance Comparison
ITRS
PA Technology f G Psat P1dB, out PAE Area Topology FoM
200/290 GHz fT/fMAX SiGe HBT 1 60GHz 10.8dB 16dBm 11.2dBm 4.3 2.1x0.8mm2 2-stage CE (D) 74.3
200/290 GHz fT/fMAX SiGe HBT 2 77GHz 17dB 17.5dBm 14.5dBm 12.8 1.35x0.45mm2 4-stage CE (S) 2125
200/290 GHz fT/fMAX SiGe HBT 3 77GHz 6.1dB 12.5dBm 11.6dBm 3.5 2.1x0.75mm2 2-stage CE (D) 9.1
65 GHz fMAX 0.18µm CMOS 4 24GHz 7dB 14.5dBm - 14.5 0.7x1.8mm2 2-stage cascode (S) 11.7
84 GHz fMAX 0.18µm CMOS 5a 27GHz 17dB 14dBm - 8.2 1.2x1.7mm2 3-stage cascode (S) 74.7
84 GHz fMAX 0.18µm CMOS 5b 40GHz 7dB 10.4dBm - 2.9 1.2x1.7mm2 3-stage cascode (S) 2.6
170 GHz fMAX 90nm CMOS 6 60GHz 5.2dB 9.3dBm 6.4dBm 7.4 0.35x0.43mm2 3-stage CS (S) 7.5
FoM calculated using Psat and max. PAE. (D)
Differential, (S) Single-Ended
  • Highest frequency PA in CMOS
  • Lowest area consumption
  • Comparable to 3, 5b in gain and Psat

1 B. Floyd et al., ISSCC 04. 2 A. Komijani
et al., CICC 05. 3 U. Pfeiffer et al., RFIC
04. 4 A. Komijani et al., CICC 04. 5 H.
Shigematsu et al., MTT 05. 6 This work.
21
Conclusions
  • First 60-GHz LNA and PA in 90nm RF-CMOS
  • Scaling from 130nm to 90nm ? better performance
  • Lower noise (comparable to best SiGe HBT LNAs)
  • Lower power dissipation
  • Higher gain (in LNAs)
  • Reasonable output power and gain for PA
  • Inductors and Xfmrs ? compact layout (low cost)
  • 6-GHz topologies and design methodologies can be
    extended to mm-waves and ported between CMOS
    foundries without redesign

22
Acknowledgments
  • Gennum Corporation, NSERC and Micronet for
    funding
  • OIF and CFI for equipment grants
  • TSMC for chip fabrication
  • CMC for CAD tools

23
Thank You. Questions
24
60-GHz LNA Measurements
  • LNA OP1dB at 58GHz -0.5dB

25
State-of-the-Art
mm-wave LNAs and PAs in Silicon
Block/ System Frequency (GHz) Technology Reference
LNA 52, 65 SiGe (fT/fMAX150/160GHz) M. Gordon et al. (ESSCIRC 2004, SiRF 2006)
LNA 61.5 SiGe (fT/fMAX200/290GHz) B. Floyd et al. (ISSCC, 2004)
LNA 60 0.13µm CMOS C. Doan et al. (ISSCC, 2004)
LNA 77 SiGe (fT/fMAX220/250GHz) B. Dehlink et al. (CSICS, 2005)
PA 60 SiGe (fT/fMAX200/290GHz) B. Floyd et al. (ISSCC, 2004)
PA 77 SiGe (fT/fMAX200/290GHz) A. Komijani et al. (CICC, 2005)
PA 77 SiGe (fT/fMAX200/290GHz) U. Pfeiffer et al. (RFIC, 2004)
PA 24 0.18µm CMOS A. Komijani et al. (CICC, 2004)
PA 27 0.18µm CMOS H. Shigematsu et al. (MTT, 2005)
PA 40 0.18µm CMOS H. Shigematsu et al. (MTT, 2005)
  • Potential of mainstream CMOS for mm-wave LNAs
    shown in C. Doan et al. (ISSCC, 2004)
  • Benefits of scaling on mm-wave LNA performance?
  • SiGe has a clear advantage over CMOS in PA
    implementations due to higher breakdown voltage ?
    larger output power
  • No CMOS PAs gt 40GHz
Write a Comment
User Comments (0)
About PowerShow.com