Title: AMINA
1AMINA
- Senyawa yang mengandung gugus NH2
- Strukrur RNH2
- Jenis Amina primer (1o)
- Amina sekunder (2o)
- Amina tersier (3o)
2Tata Nama
- Amina alifatik sederhana dinamakan dengan gugus
alkil yang terikat pada atom N dan diberi akhiran
amin.
3Sistem IUPAC, gugus NH2 dinamakan gugus amino
4Tata Nama
- Jika atom N mengikat 4 gugus hidrokarbon akan
bermuatan positif dam dikenal sebagai ion
ammonium kuartener
5Tata Nama
- Senyawa yang mengandung gugus NH2 pada cincin
benzena dinamakan sebagai derivat anilin.
6Tata Nama
- Senyawa siklis dimana satu atom C atau lebih
diganti dengan atom nitrogen, diberi nama khusus
sebagai heterosiklik amin.
7Beberapa Contoh Senyawa Heterosiklis Amin
- Alkaloid senyawa yang mengandung nitrogen yang
bersifat basa dari tumbuhan dan hewan. Senyawa
ini mempunyai struktur yang rumit dan sifat
farmakologis (faali) yang nyata - Nikotin dari tembakau
- Porfirin senyawa heterosiklis yang mengandung 4
cicin pirol yang saling berikatan. Porfirin
membentuk kompleks dengan ion logam. Apabila
membentuk kompleks dengan Fe membentuk
besi-porfirin yang menyebabkan warna darah merah
pada darah arteri ? Hemoglobin
8Contoh Senyawa Heterosiklis
- Klorofil berwarna hijau adalah kompleks Mg dengan
porfirin yang termodifikasi.
9Sifat-Sifat Fisik Amina
- Amina 1? dan 2? bersifat polar karena mampu
membentuk ikatan hydrogen intermolekuler. - Larut dalam air karena mampu membentuk ikatan
hidrogen dengan air. - Ikatan hidrogen
10Measures of Basicity
- The basicity of amines may be measured by
- 1) Kb
- 2) pKb
- 3) Ka of conjugate acid
- 4) pKa of conjugate acid
11Basicity Constant (Kb) and pKb
- Kb is the equilibrium constant for the reaction
R3NHHO
Kb
R3N
and
pKb
- log Kb
12Ka and pKa of Conjugate Acid
- Ka is the equilibrium constant for the
dissociation of the conjugate acid of the amine
R3NH
Ka
R3NH
and
pKa
- log Ka
13Relationships between acidity and basicity
constants
Ka Kb 10-14
pKa pKb 14
14The beverage reportedly produced using the
extract of leaves of Erythroxylon coca
The compound cocaine, it is an organic base
Merck Index, 2450, 11th ed. Caution May be
habit forming.
15Acid -Base Chemistry(Physical Properties)
- m.p. 98 oC
- b.p. (very volatile gt 90 oC)
- Solubility
- Water 1.67 x 10-3 g/mL
- CHCl3 1.43 g/mL
- Ether 0.29 g/mL
What structural feature makes cocaine a base?
What simple compound can you relate it to?
16Regular Cocaine Conjugate Acid of
Cocaine(Physical Properties)
- m.p. gt195 oC
- Solubility
- Water 2.5 g/mL
- CHCl3 0.08 g/mL
- Ether insoluble
What accounts for the differences in solubilities
of the base and conjugate acid?
17Acid -Base Reactions
18Acid Base Reactions
19Basicity of Amines in Aqueous Solution
- Amine Conj. Acid pKa
- NH3 NH4 9.3
- CH3CH2NH2 CH3CH2NH3 10.8
CH3CH2NH3 is a weaker acid than NH4therefore,
CH3CH2NH2 is a stronger base than NH3.
20Effect of Structure on Basicity
- 1. Alkylamines are slightly stronger bases than
ammonia. - 2. Alkylamines differ very little in basicity.
21Basicity of Amines in Aqueous Solution
- Amine Conj. Acid pKa
- NH3 NH4 9.3
- CH3CH2NH2 CH3CH2NH3 10.8
- (CH3CH2)2NH (CH3CH2)2NH2 11.1
- (CH3CH2)3N (CH3CH2)3NH 10.8
Notice that the difference separating a
primary,secondary, and tertiary amine is only
0.3 pK units.
22Effect of Structure on Basicity
- 1. Alkylamines are slightly stronger bases than
ammonia. - 2. Alkylamines differ very little in basicity.
- 3. Arylamines are much weaker bases
than ammonia.
23Basicity of Amines in Aqueous Solution
- Amine Conj. Acid pKa
- NH3 NH4 9.3
- CH3CH2NH2 CH3CH2NH3 10.8
- (CH3CH2)2NH (CH3CH2)2NH2 11.1
- (CH3CH2)3N (CH3CH2)3NH 10.8
- C6H5NH2 C6H5NH3 4.6
24Decreased basicity of arylamines
- Aniline (reactant) is stabilized by conjugation
of nitrogen lone pair with ring p system. - This stabilization is lost on protonation.
25Decreased basicity of arylamines
- Increasing delocalization makes diphenylamine a
weaker base than aniline, and triphenylamine a
weaker base than diphenylamine.
C6H5NH2
(C6H5)2NH
(C6H5)3N
3.8 x 10-10
6 x 10-14
10-19
Kb
26Effect of Substituents on Basicity of Arylamines
- 1. Alkyl groups on the ring increase basicity,
but only slightly (less than 1 pK unit). - 2. Electron withdrawing groups, especially
ortho and/or para to amine group, decrease
basicity and can have a large effect.
27Basicity of Arylamines
- X pKb pKa
- H 9.4 4.6
- CH3 8.7 5.3
- CF3 11.5 2.5
- O2N 13.0 1.0
28p-Nitroaniline
- Lone pair on amine nitrogen is conjugated with
p-nitro groupmore delocalized than in aniline
itself. Delocalization lost on protonation.
29Effect is Cumulative
- Aniline is 3800 times more basic
thanp-nitroaniline. - Aniline is 1,000,000,000 times more basic than
2,4-dinitroaniline.
30Heterocyclic Amines
is more basic than
piperidine
pyridine
Kb 1.6 x 10-3
Kb 1.4 x 10-9
(an alkylamine)
(resembles anarylamine inbasicity)
31Preparation and Reactions of Amines
32The Gabriel Synthesis of Primary Amines
33Reductive Amination
34Synthesis of Amines via Reductive Amination
In reductive amination, an aldehyde or ketoneis
subjected to catalytic hydrogenation in
thepresence of ammonia or an amine.
fast
NH3
H2O
- The aldehyde or ketone equilibrates with
theimine faster than hydrogenation occurs.
35Synthesis of Amines via Reductive Amination
The imine undergoes hydrogenation fasterthan the
aldehyde or ketone. An amine is the product.
fast
NH3
H2O
H2, Ni
36Example Ammonia gives a primary amine.
H2, Ni
NH3
ethanol
(80)
via
37Example Primary amines give secondary amines
H2, Ni
ethanol
(65)
38Example Primary amines give secondary amines
H2, Ni
ethanol
(65)
via
39Example Secondary amines give tertiary amines
H2, Ni, ethanol
(93)
40Reductive Amination Is Versatile
- Ammonia, primary amines, and secondary amines
yield primary, secondary, and tertiary amines,
respectively
41Mechanism of Reductive Amination
42Hofmann and Curtius Rearrangements
- Carboxylic acid derivatives can be converted into
primary amines with loss of one carbon atom by
both the Hofmann rearrangement and the Curtius
rearrangement
43Hofmann Rearrangement
- RCONH2 reacts with Br2 and base
- Gives high yields of arylamines and alkylamines
44Curtius Rearrangement
- Heating an acyl azide prepared from substitution
an acid chloride - Migration of ?R from CO to the neighboring
nitrogen with simultaneous loss of a leaving group
45COPE REACTION
N-OXIDE
LESS HINDERED BETA HYDROGEN
SYN ELIMINATION
46Amine Oxides Undergo a Cope Elimination Reaction
47COPE EXAMPLE
Mild conditions
48Reactions of Amines
- Alkylation and acylation have already been
presented
49 Arylamines Are Not Useful for Friedel-Crafts
Reactions
- The amino group forms a Lewis acidbase complex
with the AlCl3 catalyst, preventing further
reaction - Therefore we use the corresponding amide
50Diazonium Salts The Sandmeyer Reaction
- Primary arylamines react with HNO2, yielding
stable arenediazonium salts
NaNO2 HCl HONO
51Uses of Arenediazonium Salts
- The N2 group can be replaced by a nucleophile
52Diverse Reactions of Arenediazonium Salts
- Sequence of (1) nitration, (2) reduction, (3)
diazotization, and (4) nucleophilic substitution
leads to many different products
53Preparation of Aryl Halides
- Reaction of an arenediazonium salt with CuCl or
CuBr gives aryl halides (Sandmeyer Reaction) - Aryl iodides form from reaction with NaI without
a copper(I) salt
54Aryl Nitriles and Carboxylic Acids
- An arenediazonium salt and CuCN yield the
nitrile, ArCN, which can be hydrolyzed to ArCOOH
55Formation of Phenols (ArOH)
- From reaction of the arenediazonium salt with
copper(I) oxide in an aqueous solution of
copper(II) nitrate
56Reduction to a Hydrocarbon
- By treatment of a diazonium salt with
hypophosphorous acid, H3PO2
57Mechanism of Diazonium Replacement
- Through radical (rather than polar or ionic)
pathways
58Diazonium Coupling Reactions
- Arenediazonium salts undergo a coupling reaction
with activated aromatic rings, such as phenols
and arylamines, to yield brightly colored azo
compounds, Ar?NN?Ar?
59How Diazonium Coupling Occurs
- The electophilic diazonium ion reacts with the
electron-rich ring of a phenol or arylamine - Usually occurs at the para position but goes
ortho if para is blocked
60Azo Dyes
- Azo-coupled products have extended ? conjugation
that lead to low energy electronic transitions
that occur in visible light (dyes)